4 ’ \t - s
. DOCUMENT RESUOME- ’ .

R " " i (« :
o ED 210 503 ‘ ’ . CE 030 775 o
TITLE o nicrocomputer Operatzons. Energy Technology]
’ Series.)
INSTITUTION Center for 0ccupational Research and Levelopment,
Inc., Waco, Tex.:; Technical Educaticn Research
Centre-Southwest, ®aco, Tex. s

.SPONS " AGENCY Office of vocational and 2xdult Educaticn (EL),
: ~Washington, D.C.

BOREAU NO 4982HB0027 ‘ B &
PUE DATE Dec 81 o , . .
coumgﬁcr * 300-78-0551

NOTE I 2$9p.. Por related documents see CE 030 771-789 and

_ ED 190 746-7614 '
AVRILABLE,FROH Center for Occupational ReseaTch and Cevelofment, 601

e ; Lake Air Dr., Waco, TX 76710 ($2.50 rer module:) -

$17.50 for entire course). ‘

14

EDES PRICE ° " MFO1 Plus Postage. FC Not .Available from EDES.
DESCRIPTORS Adult Educetion: Behavioral Objective ; Ccnmputer
’ . - Storage Devices; Course Descriptions Ccurse5° Data
.o Collectiof; *Energy: *Energy Conservaticn°
) ’ - Glossaries; Laboratcry Experiments; learning
Activities: Learning Modules: *Micrccomputers:

b Postsécondary Educaticn; *Pquwer Technclegys
. \ *Programing; Programing Languages; *Tectnical
N §. Education: Twc Year Colleges’
" IDENTIFIERS . BESIC Programing Language
1 3 . . : -
ABSTRACT -,

This course in microcomputer operaticns is cne of 16
coursés-in the Energy Technology Series-developed for an Energy
Conservation-and-Use Technology curriculum. Intended fcz use in .
two~y postsecondary technical institutions to prerare technicians
for ¢mrlcynent, the courses are also useful in industry fcg updating
employees in.company-<éponsored-training programs. Ccomprised of seven
modules, the course covers the operation and prograaszinc cf :

icrocomputers. Focuses include general concepts (coxputer codes,
nary arithmetic, computer parts), their applicaticn tc tyfical
energy~re1ated data-gathering an&/écntrol problens, disk-based

. systems, energy conservation, and EASIC programming. Written ty a
technical expert and approved- by industry repdesentatives, each
nodule contains the following elements: introduction, preregquisites,
objectives, subject matter, exercises, labératory materials,
laboratory procedures’ (experiment seéction %¥or hands-cn gertion), data

. tables (included in most basic courses to help sStudents learnm to
collect or organize ‘data) , references, and glossarye. Module titles
are Computer (cgdes, ‘Microcomputer Architecture. uic.ocomputer ?g
" Applications, Disk-Based Operating Systems., Emergy Applicaticas of ;7

A /

nicrocomputers, Introduction to BASIC, and BASIC Prograsgming. -

3 (v1p) . ‘ /]
*****#***t******#****t**#*********tt*t***********#ﬁ*wtta***w*t********* .
* . Reproductions supplied by EDRS are the best that can be made *

y * from the original document. | *

o ‘t###*#ﬁ#*######**##*#########*######*#########*#4#########*#*##########

9 .

3

N ’
(a»]
Ln -
(e] .
ol
o .
[am
LIJ'
_ "MICROCOMP ‘
OPERATIONS
' p %

E Xt

YT e T ooy

. CENTER FOR OCCUPATIONAL RESEABCH AND DEVELOPMENT .
601 LAKE AIR DRIVE 2
‘WACO, TEXAY 76710

é |
A -
U S DEPARTMENT OF EDUCATION M *
Q) NATIONAL lNSTI'!UTE OF EDUCATION PERMISSION TO R PRODUCE THIS
/ FOUCATIONAL RESOURCES INFORMATION MATERIAL IN MICROFICHE ONLY . N
/) CENTER IERIC) * HAS BEEN GRANTED BY -
-~ This document has been reproduced as
(b vvvvv ved from the person of ofganization : DEC. 1981
orignating it ° . . .
) \ f Minor ¢ hanges have been made to improve '-D~ M - \"LM!] ’I - .f
K \‘1 o P UGN qudality < H
. * . M 4
? E MC o Points of yiew of opinons stated in this docu TO THE EDUCATION £L RESOURGES i
e . mant o not necessanty represent official NIE INFORMATION CENT‘ R (ERIC) "
. N }:

position of policy
’

LRIC

g™

PREFACE _ ' ‘

ABOUT*ENERGY TECHNOLOGY MODULES - ’

The modules were developed by TERC-SH for use in two-year postsecondary technical

fnstitutions to prepare technicians for employment and are useful in industry for up- T,

dating emp]oyess in company-sponsofed training programs. The'priﬁcip]es, techniques,

“and skills taught in the modules, based on tasks that en&rgy technicians perform, were

«

obtained from a natjonwide advisory committee of employers of energy technicians. Each
1)

module was wri:;en'by a technical expert and approved by representatjves from industry.

- ’} 1 —

A modu]e contains the following elements: - ~

.

>

'Introduct1on which identifies the topic and often 1nc1udes a rationale for '
study1ng the material.-

Prerequisites, which_ 1dent1fy the material a student should be fam111ar
*with before studying the module.

., .

Objectives, . which clearly identify wﬁ;t the student is expected to know for sat-
isfactory module completion.
behaviors,

e objectives stated in terms' of act1on-or1ented

@

include such action words as” operate, measure, ca]culate, 1dent1fy
and def1ne, rather than words with many 1nterpretat1ons such as know, under-
stand, learn and appreciate. . ©T

Subject Matter, which presents thes background theory and techniques supportive
to the objectives of the module. Subject matter is written with the technical
'

student in mind. .

. . . . N,
Exercises, which provide practical prgb]ems to which the student can apply this
new knowledge. .

Laboratory Materials, which identify the equipment required to complete the

.

laboratory procedure.
- . t
Laboratory Procedures, which is the experimeit section, or "hands-on" portion of

the modu]e (1nc1ud1ng step-by-step instruction) designed to’re1nforce student
1earn1ng . Ca

é‘
Data Tables, which are included in most modules for the f1rst year {or bas1c)
courses to heTp the studenf learn how to collect and organize” data. :

References, which are included as suggestions for supp]enentary readingf
viewing for the student. . ' : . .

. ’ N
A . . -

s

Preface
Module_
Module
Moggle
Module
Modulé.
Module

Module

MO-01

MO-02

MO-03

°

MO-04 .

MO- 05

-

MO-06

MO-07

J‘
'2:-
’A.
CONTENTS L
N
o y
. Y
Computer Codés ~ % i
- /e
. -k
Miecrocomputer Architecture
. / '

Microcomputer Applications

ﬁisk:Based‘Ogerating Systems

o

¥

Energy Applications of Microcompﬁters‘

.
Introduction to BASIC

BASIC Programming

[}
LS
. ? 'N
B e
L
. . <
.
H :C \
< qﬁ . A
.
b
’
°
. — ! N e
. / t
* '
. a ;
\ 14
- | \
<
:
L . Ad b ° <
- -
\/ -
L . -
L4
\K e . <
\ . ¢ o
]
.. A 1
- N
. ‘ . * Y L4
v
S N r
. & \
. '
' 4‘ 4 ’ T
.

-

PRGNS - N P - Py
T - L, N .
Lt : . o . ‘ N
y -~ - N i - A
+ g .
. ¢
. '
' D
-
- - JEU—
b - .
l L
~
«
. . .

ENERGY TEGHNDLUGY

ONSERVATION AND USE ’

. -\ :) .
. ’ ,
v . \
.
' .
h SR h Ny .
- i N . .
.
{° . . .
. N 7 >
~ * ,
. -
- -
o . g
A

v

- ERI

Aruitoxt provided by Eic:
-

4

I3

*

e’

@ Center tor Occupationat Research and Development, 1881

-

This work was developed under a conttact with the Départment of

Education. However, the content does not necessarily reflect the posi-

tion or policy of that Agency, and no’ official endorsement of these °

materiais should be inferred. .

" All_rights reserved. No part of this work c0vered by the copyrights
Hereon may be reproduted or copied i any form or by any means —
graphic, electronic, or mechanical, including photocopying, record-
ing, taping, or information and retrievais systems — without the ex-
press permission of the Center for Occupational Research and

Development. No liability is assumed with respect to the use of the in--

formation‘herein. .

ORD

.

-
a

“

~

AND DEVELOPMENT

°

S ~+* INTRODUCTION

In this course the student is introduced to the funda-
mentals of mlcrocomputer operatlons. . ’ -

This first module covers the subject of computer codes.".
,Humans speak one 1anguage while compu;grs "speak" another -
5a11ed "machime—language" - and commupications between humans
.and machine cannot be accompllshed unt11 the human language
is'!coded" into machine language, and vice- versa. Computer

language codés are -based onLnumberlng systems §uch as "binarys"

" (based on two numbers,-0 and 1) or '"octal" fba'ed on numbers’
0 throygh 7). These.codes are different from, but no more

. complicated than, the fam111ar ‘ndecimal system (based on

ten numbers, 0-through 9), which is commonly used.’
. % .

ey
v

- . PREREQUISITES

~4

v -
- LS

The student must be able to calculate the value of 1nteger
fexponéntlals like 2° and use a voltmeter to measure voltages.

e OBJECTIVES

3, Convert between’ blnary; octal hexadec1ma1 BCD and
dec1ma1 codes. . : o
4. Add in b1nary S - . T

Upon completlon of this module,|the student should be

!hle to: . .
1. Dlstlngulsh between Jlogical and analog 51gnals.
2. State and use "the TTL definition of logical. 51gnals.

P

13

-5.’ ste a table to convert betweef ASCII codes and alpha-

numerlc data~, o

3,
»
M €
. & - b}
A . -
n & -

: - .o T+ . L. MO-01/Page 1

.

<

’e

. ~ ‘ d , . .1'
/ . ‘e
. 6. © Safely turn on a mlcrocomputer and use 1t to examiné énputs
- ¥ . and alter gutputs. ;'
" 7. Defifie the following terms: ° o ,'
. . a. Microcomputer. . S
' b. Integrated circuit. S o .
e ‘c. Electrical code. - - |
d. Logical code. ' ’ N
2 e. Bit.
< -f. Threshold voltage .
., g - State of a line. :
‘ h. - Indeterminant range. .
L i.. Analog signal. <. '
- I TAnalog-to—digital convertor. -
_ k. ° Digital-to-analog convertor. v
", . 1. . Nyble.)
. ‘\, . m. Byte.) .
; n. Alphanumeric, £
n o.. ‘Program. :
. p. Word. : h :
¢ q. Mulfdpleeprec151dﬁ data. ﬁ
(r. Super w&rds. .
‘ S. Binary. : ‘ !
~ T, hLéa§t significant bjt. i_f . .
u. " Most sigaificant bit.-. = . .
'; V. OCtal. N :: .4 7 ’ . ot , -
T w. Ragix.) o] .
! X. Base. . I .
y. Haxadetimal.:-' . Ct : Q; .)
ot . 2. Kilobyte. . ' ' o ' L .
- ' aa. Megabyte. . - s L
bb. Binary coded dec1mal . = . i ,
, a * éc. Operatlon code. L) L L
. - . . » LN N .
P N 6 '. ' f ') ¢

Page 2/MO-01 ..

..P o L -
. . N

. . '
‘ .
[.

] ’ A

]: lC * ‘) : ‘ ’
- . , - .

» . .
S s ' ; Y .
, . . . b - H
-
,
N &£, % o N

3
s

.

I\de'ntif); the following abbreviations: -
ADC . N . : '

‘ .

. L

DAC

BCD
LSB
MSB
ASCII

gty

e 3

f

R

- .° . .. SUBJECT MATTER

. ‘ A -
. ‘ ELECTRICAL CODES . S
S C - \ v
Many questions hareiyes,dr no answe?s: Did you get’
" up before eight this morﬁrhg7 Was it a cloudy ‘day? - Are
you sitting down right now? Are you a m11110na1re? Is an)
®electron heaV1er than a neutron7 Were d1nosaurs warm- -blooded?
‘ Th% aqewers,may not be known, but in ‘every case there are
exactly two possible answers. The answers tell something
about the world; they give some information.- En ?act, the
answer te a yes-or-no question gives the smallest amount
of information, called.a Dbit. ‘

DIGITAL CODES . ' ’ A
e b , i ' r
The electrlcal 51gnals used 1n51de a computqr are Just
like the yes-or- no answers dlkcwsse& abqve The signals)
are either above or below a certaln.voltage called tHe thres-

hold voltage. If a voltage on, a particulatr line is above -

" the thréshold, it is referred to as being true, or high,

or logical one, or imply "lﬁc Conversely, if the voltage

is below the threshold voltage, it is said to be false, -or
low, or logical zero, or simply "0". There~is na_such ‘thing.:

as a-‘computer signal'that has a very low voltage, or a very
high voltage, or an intermediate voltage. To the computer,
all voltages are’ either h1gh or low, and are referred to
“as two states of a llne. . These states convey 1 bit of in--
formation. Figure 1 summariges the various names given to
the two states. . '
'~ ~ Computer circuits cannot tolerate voltages near the,

thréshold. A given voltage near threshold might be sensed
LI . ‘. . \

oo : O MO-01/Page 5

-

-~

F

. . . \ HIGH '._ “ - -
. LOGICAL ONE' . (
A Y 3 .
1 o .

TRUE - : - .,

, . ‘a0 v .o Figure.l. TTL Voltage Levels.

INDETERMINANT ‘ 7 . SR ' .

) . RANGE® THRESHOLD » ‘
.08 v\ . L]
LOW S] ,
, LOGICAL ZERO , N
FALSE | , - ,) .

’) ’ o v_—) \ * ', ' &> -‘

£ a f
- .
~ . ¢

as logical one by one circuit and as 1og}ca1 zero by another.
This can happen because of var1atlons in the propertles of
circuits that Cannot be controlled as they are manufactured
As a result there 1s a klnd of "no-man's _land" around the
thrtes@old Voltage, called the 1ndeterm1nant range, wh1ch
should be. aV01ded whenever posslble. Lo)
It 1s surprlslng that; d1g1ta1 computers use such a slmple
electrlcal tode. It seems strange that computers are. de51gned
for cbmplex tasks, yet work on such a simple basis. The answer

-

-dies im speed. The two states of 1og1ca1 Zero and logical one

correspopd to transistors turning’ on' and off. In fact, cir-
cu1ts ‘inside’ computers can turn on and off m11110ns of times

every second' this gives them the. ability to do Yyery ‘complex

*

'thlngskhy dolng a lot of $1mple things very fast.

Some computers use d1fferent Voltage levels .to correspond

. to’ the two logical states, but the most common &oltage defini- -
.tions'areyoalled TTL. TTL is an’ abbrev1atlon for Tran51stor ’

+

Iransistor Logit and refers to/ffspec1f1c kind of circuit’

4 -~

s - t

L A . . Y

Page 6/MO-01 g _ ' -

»

L. .
used within the comoﬁter For TTL, 1og1ca1 zero is defined
as any voltage between 0 volts (OFV) and 0.8 V. The 1ndeter-
minant region extends from 0.8 V to 2 4. .Any.voltage between
2V ang S V is considered to be logical one. Voltages above
S V can damage circuits,_as can voltages below 0 V. These
relationships are illusé%gged in Figure,l. .
* Any TTL signal will have two states. For instance, in .
the computer circuits that use TTL, 3 V and 4 V are equ1va- .
, _lent, i.e., they are both logical 1. ThlS is an exa\ple of
a digital code.) . . ~
Any device using signals.that have "two states is called
‘ ,'a d1g1ta1 device; consequently, " computers usding two’ states
as their -electrical codes are ca}led d1g1ta1 computers.
Microcomputers'are one type of dtgital computer which shares .
this property w1th some of the largest computers. Many other
. dev1ces, such as printers, teletype keyboards, card readers, v g
. and some laboratory 1nstruments, communicate information
over digital lines; those that do so are called digital

devices, even though they.are not comouters. .

14

- v,

. 'ANALOG CODES - -

o~
¢

e : " Amother type of code, called an analog signal,'has a
different meaning. for €ach voitage. For instance, the*
' solar cell in Figure 2 generates a voltage that is related
'~ to the amount of light that falls on it; that is, more 1igET

is falling on it when it generates 1 0 V than when it

. generates 0.9 V. Similarly, 0.95V ;ndlcates a light level
spmewhere between these' values. Therefore, unlike digital
signals, a characteristic of analog siéﬁals is that .each

. . [. <
¢ voltage has a different significance. Computers that use A
d _ analog signals internally are calléd analog computers, but .o J/

/ \Y“-‘* - ‘) | o, . " ,
,) .. MO-01/Page 7 -

v

~tiong of ‘microcomputer®. -

-,position of a

"

these computers are not as flexible or as powerful| as the

- digital computers and are only used to solve certain, very1

special problems to whicﬁ they can be applied easil

‘ \ ¥
WAL,
~ -
- N
™~ /’I\\ ’
‘ /////'
LS L o7 '
[
SOLAR CELL -
Figure~2. Analog Signal Generated e

by a Solar Cell.

’
.

N

Analog. signals cannot be used directly by digital com-:
puters For : 1nstance, to read the signal. from a photocell
to a algltal computer as~i§own in Figure 3a, some means must
e found to convert the.anal ngoltage produced by the solar

cell into a &1g4ta1 51gna1 that can be used in the computer. :

£

Thls is done. by an analog to-digitad convertor (ADC),'

which -is ‘not, 'strictly speaklng, a part of the computer, but

'is an, essential tool for' many sc1ent1f1c and industrial applica-
A §imiIEr‘§gtuation occurs when the~computer rg‘used to

set an analog 51gna1 This might occur, - for instapce, ingan

industrial situation where the computer has contr 1 over the

'valve as shown in Flgure 3b. In re ponse to some

1nput,\the computer is used to increase or decre se the flow "“

through a valve. The control signal sent to't valve uses
an analog code that is related in some way to /the valve .
position. The computer cannot .generate this analog code

directly, but needs an interface between its digital sigﬁalsf

N .) R @

Page 8/MO-01 . # . _ . %

1 Ed
. e .13
+ ~

-

d the analog signals requlred by valves and other similar
devices. A digital- to- analag convertor (DAC) is usually used -
in this situation to generate analog voltages from the d1g1ta1
outputs of the computer,

- Both analdg to- d1g1ta1(and d1g1ta1 to- analog/convertors
are found in many mlcrocomputer appllcaxlohé to sc;entlflc,
techn;cal, and ‘industrial proelems. The 5£ta115 of how they
perform their coﬁversions‘and what form these conVer51ons
'také are subjects for later modules. At this point it is
suff1c1ent to note the dlst{:etlon between analog and digital
s;gnals, and to reallze that many 51gnals are analog, there-
fore some means, such as convertors, must be used to get
these signals into and out of the d1g1ta1 world of computers.

¢

‘ ML 4 . \
i\ .
) s - . R ‘ - | MICROCOMPUTER
= - " DIGITAL 4 ﬂ
7 S ANALOG [(TITT])
e 7 7 Asien : SIGNALS
, {' (’ /// —/7 SIGNAL 1 ANALOG-TO- >
2 —/ DIGITAL - >
///’ /// /// /// CONVERTOR >
‘ — -
SOLAR CELL
9. ,
. .- ta)
/ .
~ N .
L] . ‘s
‘MICROCOMPUTER v ’
. o DIGITAL ANALOG
b ‘SIGNALS : "] SIGNAL—>
v DIGITAL-TO- >
. v SIANALOG CONVERTOR YALVE
)'-’ . \
' (b),
E T t Figure 3. Convertors Generate and
. a Detect Analog Codes. .

L ' | \ : MO-Q1/P ' 9
. ’ N * - a~ge
. >) . 14 '

-

vy

ia

LOGICAL CODES ! . -
. e .

[

~

A code is something[fhat stands for SOﬁethipg else. For
instance, a person's name is a-type of code; but j£$;$'just a
general code, because usually there are “many other people in.

. the wor{d with the ‘same néme, A Social Security number.is. .

>

[

another code for a person; and since this number is assigned to
oﬁly one person, it is a better .code. pStill,ffhe meéning ‘
-of this nggpef aldﬁE“EB not clear until the significance of the
code is known. The number could be a teleﬁﬁgﬁe nunbér or a’
randpm'sehuence of digits. It is impdrtant to remember that
codes have no use unless there is agreement’ about their\heaning.

-~ This" section of the module disculses the codes used in a
computer; these have meanings already given to them that must
be understood if the étudent is to understand.the computer:

At the,basic—tevel, there are'&ériousivoltages which have
C??E%in simple,'rogic§l meanings.l However, a single elec-
trical line cannot convey mu;h information. The Social
Secﬁrity number code, for instance, consists of nine &igité'

. and conveys much'more information than. a single digit could.
In the same way, most codes used within é’computer consist
of many different lines grouped together in various logical
ways. These groupings can con§ey much more\informa%ion than
single lines. ' .) ‘

- {

>t . . ,‘ M .)
. R v] Q/
BYTES; -WORDS AND SUPERWORDS ‘ ,

¥ < .- '
Only. a very small.amount of information can be conveyed
in a 1-digit line which/can.nnly take one of two states. This
. . A . ?) . .
‘amount of information, called & bit, - is the fundamental unit

of information used within 'a computer. Because a bit is such

»
\ . '
.
v ‘

Page 10/M0O-01 o 15

ne
-

.
.l
&%’:_;l
X
v

:
‘ w
.

a small quantity, bits are usually grouped together in larger
. units. In the binary code, the smal%esf grouping of bits’
together is 4 bits, which is sometimes called a nyble, or a -
. . . : ~
hexadecimal digit. .
There are 16 possible states of the 4 lines (2% = 16),

which is much better than 2 states of a 51ng1e line (2! = 2).

There are many ways of assigning codes to. each unique state

- of four lines. Of the ways that thls assignment could be
made, the more traditional one is called Blnary Coded Dec1ma1
(BCD), which is used in. Table 1. There are 16 combrnatlons
of zeros and ones -taken four. at a time. These are ustally
numbefed as shown, starting with zero.

TABLE 1. THE‘16 STATES OF A 4-LINE BINARY NUMBER.

.

Decimal ' Binary -
‘Equivalent Number

0000
0001
0010
0011
0100
. 0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

oI UNBEUHUNHO

MO-01/Page-11

.

" The nyble is still too small a grouplng of bits for many
purposes. For instance, there are 26 letters, therefore, to
represent these letters, more lines are needed than is possible
.in:a nyble. The next larger grouping of bits is called a byte
- and con51$ts of.8 bits or 2 nybles. Ther® are 2%6 combinations " -
of log1ca1 one and zero ‘on the 8 *lines (2°® = 256), and as a

l(, result, a byte can represent all of the typewriter characters -

upper case and lower case, numbers and letters — and still - N
have unused combinations for special purposes ‘ r
* - Stlll calculations: that give results larger than 256 are n

‘not possible using only single bytes. For ‘these purposes,.
' ~bytes are’ Sometimes paired together to make a word that is
16 hits long, which gives a total of 65,536,combinations
il (24®% = 65,536)." The term "word" usually refers to 16 bits,
* » - but can refer to larger grouglngs To make sure, the term
» -0 M6<bit Word".is. often used Even a word -is not laTrge enough -
< - for many calculatlonS'\ In tHeke cases, it-is p0551b1e to T
| strlné four, five or even more bytes to represent sc1ent1f1c g ;f
oraenglneerlng ‘data with a h1gh degree of accuracy. This <
grouping is usually referred to as multkple p;ec1slon data or

suRerword P ‘ :.
0f all these grouplngs, a. byte is probably the most

important, because most computers operate one or more byte at,
a time. For 1nstance, most mlcrocomputers in-use.today are .
“called 8-bit.machines, which means that at the fundamental
¢ level they use’ 8-bit or 1l-byte codes throughout It would -
> seem that Thede machines would be restr1cted to work1ng with¢ - .
numbers that are no larger than 256; however, "all computers
using 8-bit or 1l-byte codes have .the ability to handle multlple
byte words, although only 1 byte at a time. Hence, more
atcurapy is always possible at the price of speed.

1
> - . LW .

Page 12 /M0-01 ‘ pa . !

¥

~

bit (MSB). . . ,

Many 8-bit microcomputers are how being‘replaced by
16 bit microcomputers, which reta1n some of the ab111ty to
work on individual bytes, but also have the capac1ty of
using 16 bits at a time. The primary advantage of this
replacement is a substantial increase in speed. User con-
venience and programming sophistication are secondary
benefits that 16-bit machines offer due to their increased
informatioh-handling capacity.

NUMERICAL CODES ‘ ,

> .]

Binary _ P - . ’
Numbers are represented inside computers'in several

dlfferent«ways The number 00120101 is a possible repre-

sentatlon of the state of 8 lines, as shown' in Table 2. The

\order is important to note. This state is different from

the- state 10100101, which has-the- same number-of 0's and .
-1's, but in a different order. Any number represented with,
0's and 1's is a binary number. The order of a group of
binafv bits 1like this is indicated by assigning each of the

&blts a number sfarting at zero, ‘and placing the zero bit on
the right with all others in éscending,orderztpward the left.

The bit.on the right i$ called the least significant bit
(LSB) and the bit on the left is called the most significang

. . * ’ v

.. 18 'MO-01/Page 13

’ .
&
LI, -

’

TABLE 2. -A REPRESENTATION OF ONE POSSIBLE STATE
-OF THE 8 LINES IN A BYTE.)

-~ v

Bit number 7 6 S
MSB—w 0] 01} 1]l o0of1]o0]1 ,';.)SB’

5,.9

-

,Manfﬂcomputé;s.use simple lights to indicate the stateuof
each of these lines. If the light is ON, the cdr;espondiﬂg.bit
is 1, and if the light is ORF, the corresponding-bit is 0. A
Jdong string of lights, some ON and some OFF, is sometimes quite
~difficult to inteipret. As a result, and simply as a conven-
-ienée, these lights are often bunched in'groupS'of three or
four, as shown in Table 3. (NBté the simiiarity between Table
3.and, Table 1,) Again, as a matter of coﬁvenience, the groups
of three ‘or-four aié often converted into digits that are easier
to read and use. . '

- i N

TABLE 3. BINARY-OCTAL EQUIVALENTS.
Fy ‘ .

¥
Octal Digit Binary Equivalent

' . 000
001"
010
011 .
100
i

Noo111

woubup-o

19

" Octal
-As shown in Figdre 4, binary bits can be grouped by

threes and converted to digits; this is called the octal
'numbering system. The word "octal" comes frqm the Greek root-
for eight, which reflects the fact that. the three binary lines
have exactly eight poséible combinations. These eight com- .
binations are assigned to numbers 0 through 7; as shown'in
Table 3. It would.he useful for the student to memorize sthis
table since many applications require the.ablllty to -make

.

quick conversions in either direction. {\ "

s ’

AN OFF LIGHT

[LA

- (A) BINARY 288

\ | AN, on LieHT
‘A . ’

{8) BINARY GROUPED
INTO QCTAL DIGITS

AY

-
-
-

I T

!
/
/

o
|
|
g
i
@
[
b

A
o
:
!
‘ My
?
l

» ! (

: | - . | -
(C) OCTAL . . .
A , R
) Ll

Figure 4. .Binarx ConVerteﬁ to' Octal Dig}ts.

Octal. numbers should be considered as simply a conven-
ient representation of binary numbers.. For‘antance, the
octal number 307 is, 51mp1y a more convenlent way of repre-
senting the binary word 11000111. It is Just a different
(Yet equlvalent) code that happens ‘to be more convenlent

“The common numberlng system in everyday use is called
the decimal system. The "deci' root is Greek for ten and

-) ' .

MO-01/Page 15-

I
)

ta

-

"is not possible because octa&«dlglts range from 0 through
7, and 8 is not a.valid octal digit. After‘7, the right-harfd

_next (middle) column, to the next number. Thus, ‘after 307,

‘ subscrlpt is used to indicate a decxmal number. For lnstance,9

Hexadecimal

~ >y R . »

refers to the ten symbols, 0 through 9, Octal humbers are
dx}fenent from dec1ma1 numbers in some very important ways. .
For instante, the next- octal number above 307 is not 308; this"

-

column starts over with 0; and a “carry''-command advances the

4

the next number is 310. 7 _ LT
‘ N PR
v y .
— .
* ¢ + ¢

- ‘e e - .. Ja ' . 4 N
Radix Indication . .. : . : ©

i « 8 * - ‘
o' R - < F

O > ‘ ¢ < 7

number.~ Eight is the number q£ unique dlglIS'ln th¢ octal
numberlng system and is q&}led the base,‘“The base 1n the

N
',v

blnary countlng system is two,‘therefore, a2 subscrlpa is used
after all b1nary numbers. For 1nstance,*the b1nary*numberl

100 is represented as 1002. L R

LR

The base’ of .the dec1ma1 count1ng system is 10, and this *

-100,5 1s 100 in decimal. - The 10 subscrlpt is -used only when'
there could be some misunderstanding about the base. The

»

term radlx refers to the value of the base; thus, the, radix
radix o -

e ®

for b1nary s two.

Ny
-

. - o . a

- - 1

Bingry b1ts, grouped“ln fours, can be represented w1th .
the hexadec1mal countlng system. As mentioned previously, .
‘there are 16 combinations ,of 4 bits. THe. digits, 0 through 9,

. y s 3 K2 -~ . -

[t

3

» can be asslgned to the flrst 10 but new&symbols aré needed

The first sik letters of the alphabet
_are assigned to these as ghown 1n,Tab1e, . (Note that Table

U -4 s identica}l- to‘zable lxexcept gor the use of letters to

' répresent the numbers bexond ‘fine,)’)

for the remaining 51x.

» B P . -
. PRRS .
.
. . ' . . .
B . . «

. - .
" L ¢ :

. % <

—

TABLE 4.

. - . A
. . . e : -
. . L Y R .

e

» o
¢ v
.
e B
.

Hexadecimal

hd
o

Binary
Equlvalent

4 0+ digits.
‘ 0

°
¢

A

TMIMS O W 0000t &0k

«

0000

.~ 0001

> 0010

© 0011
0100 -
0101 .

o~ - 0110

g .y

0111
1000.
1001”
1010
1011
1100
11
o
111

.

-

Hexadec1ma1 codes are used for the same reasons as o tal —

"as.a convenience in readlng and representlng blnary numbers ‘

As Figure 5 illustrates,sa. byue, or 8- b1ts, can be represented

by only 2 hexadecimal d1g1ts. Hexadec1ma1 notation has an °
g\advantage over octal by requ1r1ng fewer digits, ‘but the .

-+ disadvantage of using letters €an be confuslng For 1nstance,

it takes some practlce to th1nk of the letter E as fourteen,

or 11102. ¢ ’ '

‘ . .
SN L4 . N ° .
' . 4 -
. 22
« - .
‘
.

. -

.
i -

MO-01/Page 17

.

HEXADECIMAL EQUIVQLENTS TO THE IR
*16 COMBINATIONSOF 4 Blrs : . L

4

L 4 o -
oo T : ’ &
L) s At . ',
(A BINARY . e O :(: ;‘9)- e O O —;C
& N \ n|\“ Uk \ "0\ "\
. o w/ / \ S
S . oA / 7 \ /'
. . - : R . \\ / . o \ ‘: l./) e
(8) ‘BINARY ‘GROUPED o &% . ®0: @30 '
INFOURS * ¢ \ e \
: \ / \ _/
: ’ o / _;J
{C) HEXADECIMAL |) '——l .
EQUIVALENT . h_J \ —_
\ . -y ~. >
Figure 5. Two Heéxadecimal ﬁigi;é Can
Represent 8 Bits {1 byte).
- - - , A3
C The.base of the hexadecimal countlng system is 16, so

a

16 is sometlmes uséd as a subscript to indicate the radix.
H is also useq QE the same way,_therefore, 3716 and 37H are

. v the same hexadec1mal num%er.

o

~

. BASE CONVERSION .

Y,
. . LN
. L

@

~
-
’

Four d}fferent types of. numbers have been dfécussed:

binary, octal, hexadecimal and decimal. Each<is called a
'numbering §YStém. To _use them effecE;yely, it is important
- to Qe able--to convert from one numberlng system to another

For 1nstance, to find- the 255th octal number, or the dec1ma1

equlvalent of ;33, conversions between numberlng sysf%ms are

.required. Conversions between dny two numberlng systems are

discussed in the’ followlng section of this. module. The

. -

- .

L4

¢

simplest conversions — between binar? and octal and“betgséh

binary and hexadecimal — arg discussed first.
e ’ F . .
’ S

.
‘

. . . :
_ *_ BINARY/OCTAL CONVERSION - | ,

T e e e - e

—_— e .~

Figure -4 -illustrates the principle of binary-tq;quzi)
conversion. In this example, the binary number 00110101,
was grouped into thrées to give 00 110 101. Then each-"
group of three was converted to digits (using Table 3J to

" give 0655. . L i
‘ The general procedure’'in converting apy~binary number~
to octal involves these two steps: L
1) The bits. are grouped in threes, starting at
. the right.
2) Each group is converted to a digit, using

1 ’ \\
Table 3. \ . T/‘N (

-EXAMPLE A: BINARY-TO-OCTAL CONVERSION.

p—

Given: . 1100111011010111,. -
Find: The octal equivalent.
Solution: Groupﬁng_by thrées gives:

- _ 1100 111 011 01p 111

Conveitfng each group gives:

1 4 7 3 2 7.

-E’This answer is. 147327.

]
=

e

y

‘MO-01/Page 19

| This process can be reversed for an octal-to-binary con-
| . version. To find the binary equivalent of an octal number,
' each digit is simply converted in order,'withqleadipg ze}os
ncluded in each digit. . '

;> - i
R ’ . . ’ t
) EXAMPLE B: - OCTAL-TO-BINARY CONVERSION.
lGiven: * 41776,. : o o
2, - o - . } T
Find: - The binary.equivalent. . .
“ , |Solution: Converting each digit gives: ,)
' 100 Q01 111 113 IT6~—2
T (Note the leading zetos.) '
. When this is written with the numbers together,
it becgmes this number: o .
100001111111110,.
~ = b S
s/ A & .
_ I
. BINARY/HEXADECIMAL CONVERSION T
o Conyérsion between binary and hexadecimal' is quite similép
> to binary/octal conversion except that groups of four are used.
Figure 5 illustrates the process. The number 00110101, wa: .
. grouped in fours to give 0011 ﬁlol. These were converted to
. digits (using Table 4) to give SSH. . . R
The general' rule for-biﬁary-to-hexadecimgl'coﬂVe(éion'is
as follows:« N
1) The Bits are grouped in fours, ftarfing‘at the right.
. . 2) The groups are converted to hexadecimal digits, using
Table 4.. ° S
¢ . \ f, . .
] s "?‘\'* -
/ * ~

25

. ' ! 4 . ‘
[' Ce N "
. \ EXAMPLE C:. BINARY-TO-HEXADECIMAL CONVERSION.
Vad y ; 1 .
—— | “Given: 11083130II0TOITT,. ST x o
Find: _ The hexadecimal equival®nt. ' L ”
> Solution: Groupiﬁé'by fours gives;: , .
. ' v A e . . -
.) 11&0 1110 1101 0111 , Coe
= Convertlng (u51ng Table 4) giyes: :
"-:_ . . 1
- _mi'y . . CED 7H My
~ « i »

To convert from hexadecimal to biﬁary, the process is
just reversed. Each digit is converted to binary, and then’

not droppéd. ' ...

L3

c EXAMPLE D: HEXADECIMAL:TO-BINARY CONVERSION.

e N -

Given: 37FCOy. RS s
. find: —JThe binary equzvalent o
‘Solution: Converting digit-by- dilgit (using Table 4) glves

AN " 0011 0111 1111\ 1100 0000. -

This gives the number:

+ . °

00110111111}110000002.

L | &-
T . .. _ These examples Show how much more \tompact and-
- “prqne .hexadecimal and octal numbets are tompared ko binary..

L4 L

. -

[} - - o . . s
. . v -8

‘ . 4 AT ¢

~

k < - A S '
. N . . s ' - MO-01/Page 21

‘W

I
N\

. -
A\ .
: @ * .
. -
. .

%esserréi-'

all bits are written in order. .Again, the leadinégjffos are

-
i@'. *
N

HEXADECIMAL/OCTAL - CONVERSION . ¢ ST

The easiest way to convert between hexadecimal and octal
is to go'through binary; that is, to convert an octal number
to hexadec1ma1 the octal number is first converted to b1nary,
which, ‘in turn, is then converted to hexadec1ma1

3

-

A

.
' £ . b ' ! .
E_ff' AN : I —
P X T - - . ‘. ;, C . . . '
EXAMPLE E: OCTAL-TO-HEXADECIMAL CONVERSION. * ¢} '
"] Given: ° 3701,.
Find: , The hexadecimal equivalent. fe
Solution: Converting first to binary gives: _>
“ 011 111 000 001,- —~
. Then, regrouping in fours, startifg.at the right,.
- gives:
/ .
" 0111 1100 0001
A o) Finally,'cpnverﬁing to yexadecimal gives:
‘7C1H.)
. i
/) -
'
F EXAMPLE F: HEXADECIMAL-TQ-OCTAﬂ CONVERSION.
‘ Given: FACE;. ’
Find: The octal equivalent. ‘
- Solution: Converting first to binary gives:
1111 1010 1100 1110

Example F. Continued.

3

Regrouping in threes, starting at the right,

°

gives:

(T>1.111 101 011 001 110 - :

(Note that 001 is implied“here.)
Then, converting- this to octal gives:

1753165.

=

I s

’

-
2

BINARY/DECIMAL CONVERSION

Conversions between decimal and gther codes are not as
easy; this cannot be done one digit at\a time. The dis-
cussiongbelow shows how to convert betweén decimal and binary.
* Figure 6 shows the SESBS required to convert a binary
number to decimal: ')

1) The binary number is written down.

2) The bits are numbexed, starting with zero at the
right. These numbers are called the bit numbers.

3) Thé decimal value of each bit is computed. This
is equal to 2 raised to the bit number. For

instance, bit 5 has a value of 2% = 32.

4) The bit values for bits that ate one are added
f//' tégether. The bit values for bits that are zero

-

are not used.

- %

Binary number: 1 fo {1 {1fo0]2 0 |1 0

) Bit position: 0

Bit value: 20
Decimal

equ;valent: 1

X

Figure 6. Steps in a Binary-to-Decimal Conversion. ,

L] . .

The hit values - are summed for all bits that are T in the
binary number. This example shows that 1011010110, and 726;,
are equivalent. ‘

}

EXAMPLE G: BINARY-TO-DECIMAL CONVERSION.

Given: \\\¢;0001012. ,

Find: he decimal equivalent. o

Solution: ' There are ongs in bit positions b, 2 and 6.
These have bit values of 1 (as‘stated, 2° = 1),

@ _ 4 and 64. The sum of these is 69, the decimal
’ equivalent. '
Page 24/M0O-01 . : -

The conversion from-decimal to binary is quite differ-

R R N H

ent; it is not done digit-by-digit as it is with octal and
hexadecimdl. Figure 7 illustrates one correct approach.

Decimal

Number1 . . .; ; ‘)
2 {186 Binary equivalent N
2 |93 R = 0<—Least significant bir’
2 tﬁ% R =1
. 2. {23 R=0
2 111 R =1 é~//ﬁ
*2 |5 R=1
2 L2 R=1
2 L R=0 .
t 0 R = le—Most significant bit

* 3
Figure 7. Decimal-to-Binary Conversion.
. ” e \d
8 .

The steps used in Figure 7 are as follows:
1) The decimal number is divided by 2 and the
| remainder is noted.

2) ;The.result of the previous step is divided by

"2 and agﬁin the remainder is noted.-
"3) .Step 2 is repeated until the result is .zero.

4) :The binary equivalght is the sequence of re-
:maihﬂers, with the first remainder on the right,
:in the, LSB position, -

Tt

-

T.\f

. , MO-01/Page 25 (

30

EXAMPLE H: DECIMAL-TO-BINARY CONVERSION.

Given: 2010. -
Find: The binary equivalent.
Solution: The first division gives: 10 with 0 remainder.

The second division gives: with 0 remainder.

e oo .. The third division gives: with 1 remdainder.
The fourth division gives: with 0 remainder.

The last division gives:

o - N un o,

with 1 remainder.

The remainders, with the first as the least
significant, give:

101002.

~N__ .
The rules discussed to this point ‘permit conversions be-
tween binary and decimal.- Other conversions can always be

done through binary. The conversion between octal and -decimal -

is done through the intermediary of binary; that is, octal is
converted to binary, then binary iIs converted to decimal.

EXAMPLE I: HEXADECIMAL-TO-DECIMAL CONVERSION.

¢

Given: SFH. .

Find: The decimal equivalent.

Solution: First, convert SFH to binary, which gives: N
. \

00111111,.,

-

Page 26/M0=01\\ '

’

Example I. Continued.

\

Then, the rules to give the decimal équiva-
. lent are used as follows:

T 2%+ 2t 4 284 2% 4 2% 4 2% = 63,

—

- EXAMPLE J: DECIMAL-TO-OCTAL CONVERSION.

Given: 100,4. 4
Find: Convert to octal. ¢ ,
Solution: “First converk 100, to binary. This gives:

3
s 1100100;. .

Converting this to octal gives 144,.

) ¢ - . //,//r

BINARY ARITHMETIC

*

_ Adding binary numbers follows most of the rules normally
"used in adding#deéimal numbers. One exception 1is that,_in
" binary,”1l + 1 does not equal 2, since 2 is not a binary
Mumber. Instead, 1 + 1 equals the next valid binary number,
‘'which is 10. With this one exception, long binary numbers -
can be added as though they were decimal, as illustrated
in Figure 8. '

1
1

-+ 1
N\ 0| 0 0

1+#1=10, 1+1+1=11, 1+1=10, 0+0=0

SR warry Qargy
. the 1 the 1

Figure 8. The Sum of1110, and 110, Gives 10100..

" M0-01/Page 27
: | »

~

. LARGE BINARY: NUMBERS s
' . It is sometimes uséful- to have a shorthand for certaln
large binary numbers.. The term "kilobyte" refers- to 2*° = s
-10000000000,, bytes. This binary number equals 1024,, and is
sufficiently close to a thousand to deserve the metric pre¥T§

"gilo". The abbreviation K is often used to represent 1024,,. ®
~Thus, 64K actualf? means 64,0 x 1024,4 = 65,53619. , ?
Similarly, the prefix "mega", abbreviated M, is used to ‘
~ stand for 22° = 1,098,576,,. This is“close enough to a million
to be convenient. Thus, a disk that stores 20M bytes actually
stores almost’ 21 million bytes (20 x 22° = 20,971,520).
\/
OTHER LOZIC CODES ﬂ . r
i "~ -

BCD}NﬁMBERS

&

-

B1nary “coded decimal (BCD) coding is another.- way of re-

o presenting numbers within the computer. In this systen, the

. binary equivalent of each decimal is coded -into 4 bits. For
instance, the BCD equivalent of 37 is 0011 0111. Since humans
think and work in terms of decimal numbers, this coding scheme
is convenient at "the input and output of a computer. It is
not as efficient a-use of the computer's storage, however,
because 1 byte can only represént the numbers from 0 to 99,
which is less than half of the 255 numbers permitted by binary .
coding. Furthermore, b1nary arithmetic doesn't work with BCD
code. If the computer- attempted to add the BCD equivalent

¢ -of 9 to 37, the result would be the following:
: . o, ! 0011 0111 P >
' T 7+ 0000.1001 C T T
e 0100 0000 |
. ' 33
Page 28/M0-01 . ‘ . .

- Interpreting this.as a BCD number gives 40, which is.
incorrect Some computers have a decimal mede of add1tlon,
which can correct these errors by adding an‘addltlonal 6
to the digits as Tequired. In this case, 6 added to the
lower digit would result in the correct BCD answer. When
‘such a computer is operating in dec1ma1 mode;, - then addition
of BCD data gives correct results, but addition of b1nary .

or hexadecimal coded data gives incorrect results,

N~

ALPHANUMERIC CODES

To this point, only the encoding of numbers has ‘been
discussed. What about letters and symbols? Sometimes there
ig a need for a code that is large enough to encompass all
26 letters and some punctuation, plus some numbers.
¢ Such are alphanumeric codes and-a great many. of them
have been defined. They vary} depending upon whether upper
or lower case letters are permitted, and exactly what symbols .
are includeq - just as the details of tYpewriter keyboards
vary. One of_ the more widely used codes is ASCII (pronouncea
"as-kee'). ASCII is 1mgortant because it is the code most
often used by terminals and printers, The letters are an
‘acronym for American Standard Code for Information Interchange.

This code includes 128 poséible symbols and characters
which are encoded in 7 bits as shown in Table 5. Codes 0
through 375 in the ASCII code are cepntrol characters that
control hardware but do'not result in printed characters.
Examples of this are TAB, CARRIAGE RETURN, etc.

The ASCII code for 7 is 0110111. Because 7 b1ts is
so close to a byte ASCII code is usually stored in memory
one character per byte.

MO-01/Page 29

O

(ERIC

TABLE 5. ASCII CODE.

)

< -~

Meaning Binary Ocral Hex Meaning Binary Oceal Hex
Space 010 0000 040 20 ¥ ~100 0110 10 46
! 010 0001 041, 21 6 '100 0111 107 47
, "~ o000 062 T 22 g, " 100, 1000 mo - 48
¢ 010 0011 043 23 I . 1001003 111 49
) $ 010.0100 064 2 I T 100 1010 212 “4A
ol 2 010 0101 045 . 25 r 100011 T3 43
, & ° 0100010 406 26 oL 1001100 6, 4
z N 010 0111 047 27 oy 100 1101 115 ")
. (% 010 10000 050 28 s 100 1110 116 ° 4E
y ¢ 0101001 o0s1 T, 29 0 10011y 117, 4F
» % 010 W10- . 052 2 P. 101 0000 120 50°
1. 010 1011 - @53 . 28 Q."" 1010001 121 5L
’ @ , < 0101100 0s& 2¢ R .101 0010 122 s2,
. - 010 1101 055 20 s 101 0011 123 s3
. 010 1110 056 2E 3 v101 0700 126 56
/ gloun. 057 ¢ ¥ T u 1010101 s, 125 55
0 011 0000 060 30 v 101 0110 126 56
1 011 %001 061 - .31 v 101 0111 , 127 57
2 011 0010 062 32 X 101 1000 130 58
3 011 0011 063 33 t 101 1001 131 T, 59
4 _‘ Q11 0100 064 34 z 101 1010 132 ' S5A
. 7 s - 0110101 065 35 (101 1011. 133 sB
1 s 011 0110 066 36 © 101 1100 136 5C
7 011 011l 067 * .37 1 101 1io1 135 5D
-1.8 011 1000 070 3, - 101 1110 136 . SE
9 011 1001 071 39" - 103 1111 137 sF
: 011 1810 072 3 110 0000 140 60
< 011 1011 073 38 “a 110 0001 141 61
<+ 0111100 074 " 3¢ b ° ‘110 0010 | 142 .62
. - 0l: 1101 - 075 '3p. ¢ 110 0011 143 53
> o011 1110 076 3E d 110 0100 146 66
? - Jeuun o7, IF e 110 0101 145 6s
.) 100 000, 100 &0 , £ 110 0110 146 66
. A 100 0001 101 |} o 110 0111 147 67
3 100 0010 /| 102 ~ 42 . h 110 1000 150 68
¢ 100 0011, 103 . 43 t 1101001 151 69 -
1o igo,fomév 106 4 i 110 1010 © 152 , 6
£ 100 001 ~ 105, -.45 % 10011 % 3
- ¢ T < L ' 1101100 156 6C
. a "110 1101 o 155 6D
. -.]
] .)
Page 30/MO-01 ; : ’
Ee a

ASCII numbers cannot be added togethér with a 31mp1e
resqlt however, it is qu1te sigple to convert - ASCII numbérs

to b1nary by 51mp1y lopp1ng off ‘the upper b1ts

&

There is another kind of code used by the computer to
control its operations, called operatlon codes (op-codes)

or machlne language instructions. If a problem requires
_ that two numbers be added for instance, the computer must
"be instructed to° perform the addition in the language of
digital op-codes.. . - .

There is.no standard for op-codes; ‘they vary with each
type of computer.. For almost every computer there will
be some cpde that accompllshes add1tlon, an& 69H is one op-
codg used for addition im the KIM 1 micrqcomputer which will
be used in the lab

A computer can accompllsh complex tasks, but only if
it jreceives instructions every step of the way. The op-
cdées for a computer define the only operatlons 1t can per-
form; and these operatlons are quite. simple. To do.somethlng
complex, the computer must be told to execute, in order;
many op-codes which are carefully chosen to get the job
done. This sequehce of op- codes is called a program.- One
of the most difficult -tasks related.to computers 1is writing
programs (programmlng), that 1s, figuring out the best op-
codes to use to accompllsh a g1ven job.

3

MO-01/Page 31

T o '+ EXERCISES.

. - -
£y
- o

1. . Wrife,the*type of output siLnal (andlog or. digital)
that -6ne would expect from circuits that can detect

o,

the following:

o 'a. Temperature 1 N
S) b.-.- Fire . A)
C. Burglar) .
" d. Meight - |
) e The presence of a car . A\
) £ Sunlight ; ’ Y

2. Write the loglcal equlvalent of the follow1ng voltages,
using TTL def1n1<1ons

. a. 4.3V }

- b. 1.5V ,
c. 0.5 v _)
d. 0.0V . .. S -
e.- 1.0V ST -

3. Find the hexadecimal and octal equlvalents of the

following: i "
a. 101110101,
b, 101,

- C. 110111111,

Nd. 391, .
. 4. Find the decimal equivalent of the following:
a. 101101, " ,
b. 37s ‘ ’)
c. SAH . .
J d. 10000000
e. 778
) £, EEy - '_: -) s

N
*
@ . ' . [
‘ -
B . .

o e en . epn e e USSR - .- - *

Find the binary equlvalpnt of the follow1ng
: 31y . - :

FFy . .

1,000,

147%

ABCH] , .

255; ¢ . . v
Convert the following to binary and add; then,;conVert
the result back to decimal and theck, using decimal._
addition: ' Ly
a. 7+ 3
b. 11 + 14
Cc. 101 + 273 -)

Write Yhe following in ASCII code: CONSERVE ENERGY,

, LABORATORY MATERIALS

Mierocompﬂter (Commodore'KIMll).d
Power supplies: ‘-'
5 volts at 1 A (TERC PS- 005)
o 12 volts at 100 mA (TERC PS-012).
Voltnegter. T
Cassette tape, recorder (Sanyo §$¢45):

and tape recorder.
O N -

-

‘51stors
27 ohm % watt

ﬁi k ohm % watt.
Speaker, 8 ohmy 2" dlameter

Page 34/MO-01

»~
)’l

R
.

., LABORATORY PROCEDURES

INTRODUCTION
R I §

The -~ laboratory obJectlve in this module is to familiarize
the student with the operation of a typical, small micro-
*computer — the KIM-1. The specific tasks are td measure .
and ‘observe the various electrical and logical codes it ‘uses.

Each major step is numbered and the number is followed
by a maJor instruction. The paragraph(s) that follow the
instruction explaln how to accomplish the 1nstruct10n£ and
often include -important 1nformat%on more detailed instruc-
tions and safety precautions needed.to foll¥w the instruc-
tion cqorrectly. ALWAYS READ THE ENTIRE PARAGRAPH BEFORE(
TRYING TO FOLLOW THE NUMBERED .INSTRUCTION:

N LABORATORY 1: LOGIC VOLTAGES.
' 1:5’?, i " .) P . /
- ; 1, ‘MaKe the. connections to the KIM-1 as shown in Figure 9.
‘ All connections to the KIM are méde through the
KIMBOARD.* ALWAYS CONNECT GROUNDS FIRST. Run a wire
. _ from the groﬁnd conhector on the KIMBOARD (it has

the legend {(GND") to the.minus and ground terﬁinais

r on the +5 v power supply. If more than one power
supply is used, interconnect all their grounds.

e Next make sure the _power supp11es are off. Then
connect the 5 V supply to the +5°V: terminal on the
. . KIMBOARD. ,
'Plug the KIM-1 into the KIMBOARD

Flnally, connect the 1nterface board to the KIMBOARD

u51ng the 20- conductor p1nk ribbon CabL@. Be sure to

. , o R

RN

VA .
34 . MO-01/Page 35

Connect thg +12 V. supply'té the +12 V terminal.

o

insert the -two white connectors the same side up. Recheck

v

.all connections very carefully. st

TO+5 V

. TO GROUND

TO + 12°V KiM-1

.

. MICROCOMPUTER
PORT CONNECTIQNS

(PAG, PA1, ETC) .) r. .
N =
(3

-

20 CONDUGTOR.

INTERFACE BOARD CABLE . KiM BOARD

{18-100) ~

v

jé'
o/

-,

0000OO0OO
J 000OO0OO0OO

(KB-100)

TAPE RECORDER

¢

~
s

Figure 9. KIM-1 Con'nec‘}:ions'.

L]
.
n

2. Turn on and reset the KIM. Apply 5 V power to the KIM and
press -the reset y&/ton (marked '"RS'" on-the keyboard).)
The 6-digit display should light; if it does not, quickly

® .

remove the power and get help.
3. Wire the test circuit shown-\’in Figure 10. : For'the first

experiment, apply:;;["arious voltages and determine how the

KIM interprets them. To do this, a variable voltage

source 1is requirecf; therefore, the 500Q potentiometer,:

" wired as” Shown ;in?Ffivgur@Dtis used. -As-its knob—is —

turn“ed—,r.;~ the volt‘a‘ge on .j.tg center tap changes conti‘nuously’ N
~ N . \ ‘.' N

-~

P

F

-Page 36/MO-01 -~
¥ . - s

- e

from 0 V to 5 V. Connect a voltmeter to this tap to
measure the voltage. ~/

TOP PART OF
INTERFACE BOARD

. Oreso 6 PAO :)
O#s1 Oras| . TO VOLTMETER
10 Ao |Ore2 ‘ '
Y - s
-
65 TO GROUND

: l. . Toes v-T®

L~

¢ 8000 L.
Y : "—‘\\\
HV~vwv (::} POTENTIOMETER
500 0 - -
(a) Schematic Drawing of Circult {b) Pictorial Drawing Of Clrcult
— N - = ——— e

Figurellq. Circuit for Testing ’
Input Voltage Levels.

The variable voltage is app11ed to one of the KIM
inputs, called PAO. The KIM can read PAO and dlsplay
the result on its display. '

4, Measure the transition voltage for PAO. The KIM has
many internal memory cells (called address<s), each of
which can store a byte of information. Each cell has a
2-byte address. The computer reads ‘PA0 and displays the
result when it is set to display‘the contents of address

' 1700. The KIM display shows 6 hexadecimal numbers: The
left four numbers are always an address and the, right
pair shows the contents of that address ’To find out
,what is in the éddrefs 1700, préss the following five
buttons on the KIM:

o -

: “ 'MO-01/Page 37
41 \g

-

AD | |1 7 0 0 S~

N— e J
Says "an The address. !
address
follows."

e

The 1e£t four digits should display 1700H (the address);
.and the right four should disp ay either FEH or FFH
*(indicating the contents of«théH). The display is FE

if PA0 is a logical zero and ?F‘if}PAO is logical one.

Turn the 500 @ potentiometer so that the voltmeter

1nd1cates<\hat 0 V is being app11ed to the PA0. The
" display shduld indicate FE. Slowly increase .the voltage

until the display just turns to FF. Record the voltage
in Data Table 1 (PAO Transition Voltage), Repeat this
twice. Now apply 5 V and slowly decrease the vgltage
- until the display just changes from FF to FE. Record
\\\\ the voltage. Repeat this -measurement twice. ,(These
S measurements give six values of the threshold voltage
PAO. Discard any that are far out of line and average
the remaining measurements and £eEord the results in
Data Table ‘1. t
5. Repeat the measurements for the other PA lines. There
. are a total of 8 bA lines labeled PAO-, PAl . PA7.
' These correspond 'to the 8 bits:'in the byte at address
¢ 1700. #hen no.connection is made to any one of these
lines, the computer reads that 11ne as loglcal one.
With no connections to any of the PA lines, the computer
reads them as, 11111111. It converts .this to hexadecimal
for the displgy. - The hexadecimal equ1v§1ent of 11111111,
‘ : _' is FFH and thi®is displayed. If PAl is at logical zero,-
_the computer regds 1111 1101 and converts this to FD

Page 38/MO-01

42 ¢

°

.
B

The kind of display used cannot display capital D
since it would look like zero. The KIM uses the #ower
case, which looks like Cj, . Likewide, B is displayed
as éj , and should not be confused with the number 6,
which looks like E; . See below for an expanded view:

s ’

Connect- the test circyit in Figure 10 to PAl. The .dis-
play should switch between FF and FD, -depending gn the
logical value of the input at, PAl1. Repeat the measure-
ments in Step 4 and use this to find the threshold
voltage for PAl. One voltage reading is sufficient.
Repeat these measuremenis for all the remaining

ports, PA2 to PA7. In each case, the display—alternates—
between FF and some other number. Record the readings

in Data Table 1 (Other .PA Transition Voltages) and explain
these numbers. These measurements give the transition '
voltage for each port. Are they all the same? Would an
indeterminant region be needed for these?

Measure the KIM's outpdt voltages. In this step the KIM

is used to generate logical outputs and the voltagés of-

these will be measured.:fFirst, disconnect the 500

'vpotentiometer circuit in Figure 10. Then make PA gener-.
~ate logical outputs by placing FF into address 1701H'

This can be done by pressing the following keys:

pmnjajnin

An address The éaaress.
follows.

‘ ' ‘ \ MO-01/Page 39

43

'

N

»

A

' W@
“ \

\ Data The data.
follows,
- e
From now on, do not press reset because it changeé the
contents of 1701H} (If it is pressed, FF must again .
be loaded into 1701H .) Now generate logical opes on
all the PA limes by placing FF into 1700H Do this
by pre551ng the following:

: Anllm[_]DA'F

2

Use the VOM to measure and record the voltage on each
of the eight PA lines. Record in Data Table 1 (KIM
Output Vo;tages) Generate logical zeros on the PA
lines by pressing n @ @ Again, read and record.
the voltage on each of the elght PA lines. What is

“l

4444___4_________xhe_range—ofgvol;agesaaheWKlM—geneza%es—£e¥—£he téegf‘ | /j\

logical stat'es?.

\ ~ ' :
Page 40/MO<01 ime
‘ Y “ .

@ ~

LY

LABORATORY 2: THE SOUND SYNTHESIZER.. '

1. Build the audio amplifier in Figure 11.
sV . «
, E
e
\ 'C
E B
c
ta) Schematic,, (b) Plastic Package (c) pottom View of Metal
Tran?lstor . Can Transistor
Fi . i a dio-Amplifier—and Transistors:

The next step is to enter and alter some programs that
can make quick changes in the output voltages. The
easiest way 'to detect these -voltages is to convert them
into sound. 1If a volfage regularly alternates between’
logical zero and one, it can produce a steady tone. A
small amplifier is needed to hear the -sound, Figure 1la
. : shows the required circuit. The cehtral element is an
) NPN transistor. The-three leads on the transistor are
called the emitter (é), base -(B), and collector-(d).
Figure 11b show3~how“t§ identify these foé two common
transistor packages. Connect the circu{é with ‘the power

off. . : - Wy

- . . . MO-01/Page 41

-
M T

£

2. -Enter the program. Because this step makes extensive

use of the KIM, learn these rules about-its operation:
a. The |[AD{ and |[DA| buttons are like a switch; the
computer remembers which of the:-two was last pressed.

b. If |AD| was last pressed, then any number pressed

from 0 to F goes into the address. Any number
of keys ‘can be pressed, but the last four always
give the address.

c. If |DA| was pressed last then any number pressed

becomes data and is placed into the address being
_ displayed. . This alters the contents of memory.

d. The l button adds 1 to the address. This button
nakes it easy to change the contents of several

addresse; in a row.

T "&.- The |GO button starts a program to executing the

op-code that is: displayed on the right and located
at the address on the left of the display.

-

- Hereafter, the buttons to be pressed will not usually
be stated explicitly in the lab procedures; so, use

‘ thesé five rules to tranélate the lab pxocedures into
key strokes. Enter. the following data into the first
six memory-addresses,- starting at 0000:

eg| [oo] [17].[ac] [oo] [o0

'

@

Go‘backAEQ 0000 and check thésp six -addresses.
3.+ Execute the program. Place FF in 1701. Slide the black
' §witch on -the keyboard OFF, away from the ON legend.
Now start the prozram at 0000 by préssing the followiqg:

HEEEEE
' Says "start, the computer"
.at address 0000.-

" Page 42/MO-01 L S . 46

The display should blank out and the speaker should generate

a high-pitch sound. What happens when the amplifiet 51gna1

is obtained from PA outputs other than PAS? Record the

Jresults for all other ports in Data Table 2 (Program Execu-

tion). To stop the computer, preés (reset). Reset
c ’ *always changes the Tontents of 1701H' To avoid tpfs;'

place 00H into 17FAH and 1C into 17FBH Now the |ST

(stop) button will usually stop any program without—alter-

ing 1701H' ,

4, - Explore the effect of other op-codes. The mechanism used

by the computer to make the quickly changing outputs has
not been discussed. That will be covered in another module.
- Here, it is sufficient to verify that the codes entered
cause the sound output. Try altering the codes in any
of the first six addresses and then,starting the program
again at 0000. Note that reset puts 00 into 17015 so,
to get any result, FF will have to be reloaded into 1701,
each time the computer is reset. - Does altering data in
any other address affect the sound? Record the observa-
tions in Data Table 2 (Other Op-codes).
5. Load and'run other. programs. Other longer programs are
recorded ‘'on cassétte tape. The‘following procedure should

always be used to read taped programs into the KIM. Each
tape can have many programs on it. To tell them apart,
each can have a 2-digit hexadecimal number called the ID

(identification).)
o a. Place 00 1nto address OOFJH |
ST " b. Place" the ‘ID number in address 17F9H - =
c. Start executhg at address 1873H ’
‘ d. ¢ Advance the tape to near the beginning point of the
program, if known. Connect the\gape output marked A

EAR into the computer tape input.® Turn the volume
to maximum and turn the tone control to full treble.’
Check that 12 V is applied to the KIM. . -

o

. 47 MO-01/Page 43

\‘L ‘ N i . ‘\; .

¢

e. Start the tape reading. When four zeros appear,
the tape has been successfully read. If four F's
appear, or if nothing appears after a few minutes, .
the tape was not read propeily. Try again before) (

. asking for help,. — -

Read in the program using 01 for the ID. The starting

address for the program is 0000. With the speaker cir-

égit connected to PAS5, run the progfam and describe

the results in Step 5 of 'Data Table 2 (The Taped Program).

>

Page 44/M0-01 - 48' o —

-

<

DATA TABLES

[4

¢

{ DATA: TABLE 1: LOGIC VOLTAGES.
Step 4: PAQ TRANSITION VOLTAGE *
- [
& ‘ ' Measurement Voltage
1 Tw :
N 2 .)
~ - ,‘*———
. _ 3 : ,
4 I
5
° I
Average vo*léage: ! . . N
é
{
\ _
) E
A \ .
))
, ¢)
' v
Vv
49 MO-01/Page 45 '
Q w)

-

{ .
Data Table 1. Tontinued.

v

A

Step 5. OTHER PA TRANSITION VOLTAGES. .
. | Display Seen When ,

PA Line Voltage. Line Is Low Binary Equivalent
1
2 .

3 3 2

4 .
5 Tl [~ . *
6] . v
7

Explain the results in Columns 2 and 3: .

b

*

&
N\

g

Indetérminant region(for PA lines:

@

>

N

'Steép°6: {;KIM OUTPUT VOLTAGES

e, ° h@ééﬁgéd Voltage
“PA Line "Logicaf\q * . Logical 1
1A \
’ 2 -
. 3. ’
\@A ‘@/, /
. _5 e L
) .6-'_’.' \\—/ _"])
7 7 '

[

Range of logical zero voltages:

Rangelof,logical one voltages:

Page 46/M0-01+

o
‘.

]

DATA TABLE 2: THE SOUND SYNTHESIZER.

Step 3: PROGRAM EXECUTION' s
S . T
(’ Description of sounds:) :
PA Line , Description
0 N ;
1 N
<
3
4 e
' 5 L.
E."4
6
7.% ‘
\/' N
| Step 4: OTHER QP-CODES . B
| -lhaddress | Op-Code Used | Result ~
0000 -
. — 0001 ' ‘
- 0002 . L '
™ - 0003 . - % - ‘
0004 '
b 0005 i B : 2
Step 5: THE TAPED PROGRAM - . ,]
' Describe the output. : : /
;L '. . »
A .
'. . - ‘
- . , - - ¢ . A .M\
’ MO-01/Page 47
51 -
- -

4

.Tinker, Robert F. Microcomputers. TERC, <1978.

FERENCES : _
RE (| o

v ’ L
Foster, Caxton.*ﬁ;crocomputer Programming: The 6502.

‘ .Addison-Wesley. . .
KIM-1 User's Manual. Norristown, PA: MOS Technology.

S \

- RN -4

e . LI . . . o 1,
" L * - . +
3 s . - & = iy
- N I . 7 . .

S . ’ ¢

- O - ’ 7
a — P — -
r - " o S—0
- 24 ~

g o “ - ¢

B v
VL. -
v
- .
o
~
f

- -
e .
. -
x
. -
N .
.

ENERGY TECHNQLOGY“

p CONSERVATION AND USE’

2

S - -
-
. o o
. a L
A wt N ~
P
" - . ~ -

)

A'xJ -

MICRGCOMPUTER OPERATIONS

Monuus MO-02

0 . = P

-

MICRA?CGMPUTEB ARCHITECTURE

RS

“ - .. INTRODUCTION.
A Ly IR

"Architecture" refers to the "building blocks" or physical . 'E

4

. components within a computerathat perform its operation. 0
undenstand how a digitally-coded 1nput is "processed" within thé.
.computer to produce a des1red’output the major_compeﬁents,a
'called "hardware," must be examined. . ‘ - .

k The "brain" of a- m1cr?computer is a small chip, or 1nte- -
grated circuit (IC), such a3 Intel's 8080 Zilog's Z- 80
*Motorola s 6800 or MOSTECH's 6502.. ‘Each type of ch1p ‘has 1ts B
own "1nstruct1on set," which is a list of things it can do - -~
such as '"move 1nformat1on stored in memory location 3Q to the -

_accumulator (temporary storage),' "increase number stored in

‘the’écéumulator by-1," of "'subtra¢t number stored in memory
30 from number 9tored in accumulator," etc. The chip is the :
' heart of a unit called the Central Processing Unit (CPU); .

o h_ﬁv-lEE}Eh,C°ntr°15 the flow of data (1nformaf1on) and’ performs
) all—-computations. The chip routes the s1gnals along l1nes
(called "buses'") from memory locat1ons that are distinguished - ’,’
from each other by their™ "address." A - CeL
Just as an automobiTle eng1ne Tuns only when the valves
open and close at the right time, relat1ve to the p1ston s . Ty
" operation, so, too, the operation of a m1croprocessor is ’ \
ependent upon a ''clock™ which 1nstructs the various parts
df,a computer. These cldck pulses er;/routed.to all com-
ponents via a ''control' bus.)
The primary purpose of Epis module is to explain how
copputer hardware, via its architecture, perferms the. task
signed to it, By the -erid of the module, the student ‘ -
should be able to predict what the computer will do with ‘

4 1nstructions g1ven it.

. -

PREREQUISITES, =~/

0y 0

..

The student should have completed Module.MO- 01 of
Microcomputer Operatlons v

OBJECTIVES

) T)

Upon completion of this modulé:\the student gﬁould be

able to: :)

1. Explain the function and significance of major archi-
tectural.featungs'of a computer” and the 6502 microproces-
sor, including the CPU, RAM, ROM, I/O Ports, Accumulator,
1ndex reglster, and program counter.

‘2. Examlne and alter memory and CpPU reglsters on a KIM micro-
processor.

3. Single step through programs that use the op-cbd%s in
Table 2 and verify the effect on each step.

4. Define. the folf?wxng terms: ’

Interface. ’

a.

b Program.

c Algorithm. .,
d, Programming; . C
e.. *Central processing unit.
£. - Volatile.

g Input/output ports.
h System I/0.

i. X index register.
j Bugs.

k Application I/0.

1 Addre%ses.

Page 2/MO-02

¢

L - - T S« T = VO o I o

\\

m. Invalid address.
"'n. Operand.

0. Mnemonic.

pP. Monitor. -

q. Bus.

T. Control Hus.

S. Address bus.-)

t. Data bus.

u.,. Accumulator.

v.. CPU register.

Ww. Program counter.

X. Single-step mode.

Machine instructions.

a. CPU
AN
ROM \
RWM
I/0 ports
PC
X register
OR . T
AND
XOR . .o

. Identify the following abhkreviations:

2

)

L . SUBJECT MATTER

¢

- A typical control application of a micrecomputer is showh
in Figure'l«‘ To have a particular chemical reaction proceed
in a desired wa?, the microcomputer in Figure 1 has been pro- -.
grammed to control the temperature of a reaction vessel. It
can, for’ instance, glowly raise the temperature to a predeter-
mined level and then let it drop quickly to a lower ,tempera-

" ture. The m1crocomputer determlnes what the temperature is in
the geactlon vessel with a temperature sensor that generates
an analog signal. Slnce the computer cannot read an analog
signal directly, this signal is converted to a digitél[signal
with an A/D convertor -(ADC). |

~

DIGITAL "s’u'sNAL DIGITAL SIGNAL
« ' -

7~

A-TO-D (ADO) . .) ' _

CONVERTOR | , 5-T0-A (DAC)
M . CONVERTOR)
ANALOG : .o ’ . : e . =
SIGNALS —) . ' ANALOG sncswusg__..1 .
s M- [‘ -
- 2% Cos CONTROL
- ' CIRCUIT
I'd . ’ -

TEMPERATURE SENSOR | ~)

REACTION \ X '

VESSEL ° HEATER

.Figure,1. A Typical Computer Application:

</

: MO-02/Page 5

On the outpuf side, fhe computer %bntfgizrthe amount of
power delivered to a heater. It cannot do this directly,
because the heater requires more power than the computer can ~
deliver and because the varying amount of power is inherently
an analoé signal. The computer must first convert its diéital
output to an analog level. This analog signal is then used ‘
to control the amount of power applied to the heater'By an
appropriate control circuit.

___ﬂ__JIth_example-Ls—typicai_oi_manyﬁappllcatLonsﬁo micro-
computers. Since the ,computer is a d1g1ta1 dev1ce, it must
-have digital input and output signals. As a resulg, the
computer ;tself’gg;yally aan be represented as a black
box with a certaiﬁ number of digital input and output lines
‘conne ed, as shown in Flgure 2. In applications such as
the one invelving the temperature controller shown in Figure
1, where the computer's input/output- digital signals aré not
appropriate, special,circuitizlike the A/D and D/AYconvertors
must surround the computer. The general term for the circuits
that go between the‘computerlénd the real world is in;erface
circuits., Man} different kinds of interface circuits exist,
each suited to adapt the computbr_to one or another application.

- >
DIGITAL INPUTS 3 b 5 - DIGITAL QUTPUTS

Figure 2. A Computer as a .Black Box. .

.

4

The connection between the inputs and outputs of a com-
puter are determined by the program, which is a sequence of
of simple instructions that the computer executes. For exam-
ple, the mitrocomputer portion of the temperature controller
* * in Figure 1 could be programmed to read the input signals and
determine the actual temperature:of the reaction vessel, then
. to compare this temperature to the de51red temperature and make

[on- tb’thé‘ambuntruf'power—berng—appir

the heater
A step- by step procedure for solving a problem is called
an algorithm. Many different algorithms are possible. The
simplest might be something like this: "if the temperatue is
too low, increase the heat; if it is too high, decrease the)
heat.!" Or it might be much more complex and consider factors
~ . such as the length of time since the heat was last changed,
the amount of material in the reaction vessel, the outside
temperature, and so forth. Whatever the algorithm is, a pro-
"grammer can translate it into instructions the macline can
v understand. This is called programming . .
o A computer is a general purpose device which ‘can be
applied <to many practical problems. Two things must be done —
-~ t¢ apply a computer to a particular problem: it must be -
interfaced and programmed. Interfacing adapts the computer
"to the ﬁarticular real-werld hardware and gives the computer T /!
the ability ‘to test and control variables in a particular i
situation. The program takes- the general, simple instructiens
of the computer and puts them in proper sequence to accomplish
the specific task at hand. In the sections. that follow, the
student will see how the interface and programs can be made
to work together. ‘Even simple applications require a good
understanding of the hardwatre 1nterfac1ng and, of the software

prograni “K . |
» .l) - -, - (

- 5.‘% MO-02/Page 7

. DIGITAL INTERFACES

The home security system illustrated in Figure 3 uses a

) variety of switches and light beams to &Qﬁect whether or not .
a burglar is in the house. If the microcomputer "thlnks

there is a burglar, it rings an alarm. This partlcular ap-

plication requires digital inputs and outputs. Each ‘sensor

(digital device) tells whether or not it detects an intruder;
__________g;;ng_whglg is or there is not an intruder.

.

Likewise, the i

output is digital;

the computer either rings the bell or it
doesn't.

In this particular case, the logic required in the
real world is compatible with the logic of the computer.

~

. KEY ? . ’
: SWITCH - ; -

Y-

akt

oooR
SWITCH v N

, . > BELL

¥

WINDOW
SWITCH

JLIGHT..BEAM
t DETECTOR

~

" WINDOW
- TAPE

K3

SONIC
SCREEN

COMPUTER |

TELEPHONE

Figure 3.

Page 8/M0-02

\)

o

LICHTS

A Microcomputer Security System.

-

plugged directly into the computer. The sensors
computer a;e not necessarily electrically compatj
may.not generate the exact voltages that are nedded on the
computer inputs and the computer output may not generate the

" kind of signal necessary to ring the bell. In this case,

some interfacing is often required to match the electrical S

v
needs of the vari components to the requirements of the

[A . Py N

computer.

4
—~

ANALOG INTERFACES

Analog 51gnals are needed in many appLicafians. The
dnalog signal is shown in Figure 4.

1 is produced by the computer and a
special circuit is used to convert this to an analog voltage.
A typical approach is to have an increase of 1 in the digital’
number result in an increase of 0.04 V'in the analog output.
In other ords, the number OOH'would result in 0 :gpd%put,

the numb¢r 01,, would result in 0.04 V output and e

H

02H would result in 0.08-V output. A general equation for

output voltage is as follows:

* number

pe—

V:0.042N Equation 1
'where: * y ‘
V = The.output voltage.
N = The applied binary number.
The largest possible 8-bit output is 1111 1111. o';FFH (Wthh
is the decimal number 255). Using Equatlon 1, this converts
to 10.2 V (0.04V/§fep x 255 steps = 10.2V).

61. MO-02/Page-9

.

«

AB;ALOG EQUIVALENT

- R - . .
L]

kP N

o . (o
The convertor in Figure 4 permits the computer to generate

analog signals$ in the range between 0 to 10.2 V. The voltages
are generated in steps of 40 m{ (0.04V), which méans that the
computer cannot generate any arbitrary voltage, but it can get
within 20 mV in any desired voltage. -For instaﬁce, suppose’
the'computer needed to generate exactly 6.175 V. Dividing
this number by 0.04 V (the size of one step) yields the total
number of steps required to generdte this voltage. The result

>

. is the following:

{) .) '
6.175 V _ ’
. 0.06 V 154.375 steps
In other words, 154.375 steps of 40 mV each would be required
. to generate this voltgge. Of course, the computer cannot
‘ generate a fraction of a step, but could come close by
generating 154, in binary, which would result in the following :
qutputpvoitage: .) f.
. . A ’ M . Q
L3 ' :
Page 10/MO-02 /5). L) .
o 62
Q M r
ERIC
| ,

. ',\ ., P . *

154 x 0.04 = 6.16 V

This is different from the desired voltage,b& only 15 mv.

Q

~ EXAMPLE A: -D/A CONVERSION.

a2

Given: A_10-bit dlgltal/analng_cnnyextnrwihat generate&_~,n
8 mV per step. -
Find: . The maximum voltage an@ the digitﬁl output
required to generate a voltage close to 6.175 V.
Solution: The maximum value for-a 10-bit D/A convertor
would be 11 1111 1111,, or 1,023;,. If each step -
were 8 mV, then,l 023 of them would be 8 184 V.
This is the maximum voltage a convertor could
geﬁerate[A voltage of 6.175 rebresents the
_following: number of 8 mV steps: Ce

6.175 _
7008 - 771.?75 steEs

Phe best the computer could do would be to output
the digital®integer, 772, This would result in
an output. voltage of 772 x .0.008 =.6.176 V. In

this case, there would only be 1.mV error.

-~

X Spec1a1 analog to- dlthal converto} circuits also exist,
(as shown in the block dlagram in Flgure 5). When a voltage
within a specified range is appjied, these can generate the

MO0-02/Page 11

- w

corresponding digital ;number. In this way, ;he~gomputer can
obtain the value of analog voltages” that are .applied by reading
the digital output of the analpg-to-digital convertor. Agaii,
theye is some inaccuracy becadse of -the digital nature of the °
final result. ‘ ' N

3

I

‘—

EXAMPLE B:" A/D CONVERSION . ,_ :

i . Givei%»- An 8-bit A/D convertor with 0.04 mV per step. - v
Find: The digital output generated when 1.75 V is applied.
Solution: Firs$t calculate the number of 0.04 .V steps in 1.75 V. "
’ r
. (number of steps) = %4%% = 43,75 steps

The ADC should generate the next ‘nearest integer, -
44.\ Some ADCs will ignore the fractional part and
generate 43. Either answer is correct. -

Aruitoxt provided by Eic: d

) o ' ‘ COM?UTER COMPQSENTS 5 .)

. The’ primary ~gomponen‘t;s within a #¢ypical microcomputer -
are shown in Figure 6. The central processing unit (CPU)_/’) .
S controls the entire sy’stem and also performs the arithmetic
and logic operations requlred Two forms of memory aré
shown: random-access-memory (RAM) and read-only- mem,ory (ROM).

* Ramdom-access- memory is memory that. can be both read from and -

written into by the CPU. For this reason, a more accurate

name for this type of memoryﬁuld be read-write-memory (RWM).
from, but not altered by, the CPU

ROM memory only can be read
A~

under normal c1rcu\tances. _ ___\

:, uf;‘gu.: %?E{%&,‘é S —
- e yarem o INTERFACE DISPLAY
S L o o -
] »ﬁi@“\?ﬂ;}}g@gﬁf% circuits [T KEYBOARD
%ﬁf ot
Ayt S A ~—=MASS STORAGE
13] . ‘ ~
2]
ARt N — —
SIS T
EEZ W ® APPLICATION INTERFACE
. 0(”"‘” —t wo =t CIRCUITS
%
/ . 4 yi -

K . . .

*

Figure 6. \Primary Compongnts within a Typical Microcomputer.

i ,
k The RAM memory universally found in smdll computers is ﬁ
olatgle' that" is, it loses its contents when power is removed

om the system. To have programs and data available to the -
.« Computer when it is first'/’powered, a non-volatile memory is ‘
s Tequired. ROM.memory is!'/nen-yolatile and is available as soon

? ') " /

o . ‘ 65 - :

MO-02/Page 13

ERIC - - , ‘ ,'

PAFulToxt Provided by ERIC 4
’ A4

E . . g - | | P
) . ’ . ’ :

as the gomputer is powered up — whick is the réason‘most
microcomputer systems have ROM memory.

When .the computer communicates with the outside‘iorld,
it uses input/output ports (I/0 ports). Two kings of I/O ports
are shown in Figure 6: One type of I/O port is SSIiéa systen
1/0, because it has circuits permanently gonnected to it that are

ﬁecessary for the operation of the computer system. Th¢ other
type of I/0 is called application I/0. This latter I]O‘$th is

L

———— not just dedicated to use by the Comput§T foT its OWn purposes;

 different addresses; it simply 1is the limit on the total nupber

. are usually invalid or inoperative. It is the responsibility .

it 1s available for specific appllcatlons of the computer. For
instance, switches, speakers nd A/D and ﬁYA convertors could be
connected to the appllcatlon I/0 for particular applications.
(Not every computer will have all these componeﬁts.)

ADDRESSES . .

’ >\ ; ~"

The computer system memory is organized, Kby addresses. -Each
address can be thought of as a "cubby hole," where data can be ,

stored or from which data can -be retrieved. If the CPU is-an S-bzt
CPU, then’ exactly 8 bits of 1nformat10n c¢an be :stored at or

*

retrieved from each address. Similarly, 12- and 16-bit CPUs store
12 and 16 bits at each address.

L

aysjnmvﬁkfiﬁjﬁtrwa“~wv~~' —
addre 1nformat10n (in two groups of 8 bits each) In this

way, tley can address 2‘5,'or 64K (65536), dlfferent addresses -
rather than just 2%, or 256 addresses. This does not mean, -
however, that every microcomputer system can use that many

of addresses that could be used in such a computer system.
The memory used in mos{‘microcomputér systems is much less than
64 kilobytes (usually 2k-to 16k), and as a result, many addresses

of the progfammer to be sure that addresses used‘ih a.program

do corréspond to valid memory Jocatioms.

Page 14/MO-02 , S

- 66

.

KIM — A SPECIFIC-EXAMPLE

Figure 7 shows~some of the detail of the KIM-1 micre-
computer architecture. One gélobyté of RAM memoty resides
at addresses 0 through SFFH (1024,,) and two kilobytes of ROM

memory reside at 1800 (6144,,) through lFFF (819210) System

- I/O ports start at address 1740 (5952,4) a\? anpllcatlon

1/0 ports start at 1700, (588810)

DISPLAY

N
KEYBQARD

~
TfY:EIEBFhCE

TAPE INTERFACE

o

SYSTEM TIMER

|TPORT A

PORT B

. \ o
. ,\~_ Figure 7. The KIM-1 Architecture. - /{§~,/

When thg
it to, start executing programs which are stored in ROM memory,
These programs-are respon51b1e for using the system I/0 to
light the displays and examine the keyboard for depressed keys.

IM is firgt turned ¢n, special circuits causé

- - ' R ' - .
L. W , - ‘ s .
' o 677 MO 02/Page 15

-t

N

yaE

P

N , : .*./

As~disetissed in the previous module, vdrious keys on the key-

y board cause certain important functions to be performedégjggh ’
' as displaying and alteriné memory, and 16ading,7executi and
recording programs. All of these operations. are peformed by

the CPU:E? executing/;iigrams stored in ROM memory. Without)

the. ROM emory, nothing would haﬁﬁenyTn the KIM-1 system - eé&n

A with the power apniied there would be no way of‘entering'pro- .

>

grams, ‘no way of- executing them and no way of exam1n1ng the con-

—— e

ROy S

”;‘"““”§:“TEHTS“Uf’VHTIUUS”lOC&thHS The set of pmrograms stbred” 1n—ROM
memoery, which permit all thls to ‘happen, are collettiv
as the mdnitor.

Although not used in thls modul

,\
»

nown -

, the KIM Has mon'tor'bro-‘, e
letypewriter: (TTY)
output of ,'ograms@and data. -7
dpory bank; that

R an address

grams and ;nterface hardware that cah use a tg
wigdch is useful for providing type
In the KIM, -an output looks just ike anothe
is, the CPU can store and retrieye informatio

which is known as .the output port. The only di

. this address and the RAM memory addres: ds that

. p Tt address, data can be read by the .o ide world. There is
' ta in RAM mhemory.

. . »
Sigiig;ly, input ports are like ROM memory; becaus;é;heyﬂare
irputs,

=S
gnce between
noutput

‘Ho dire® way of reading .and measurlng the

the CPU canno# alter the contents. Instead, the contents
———w"-*learew§et by the~vo}§3ges applied from the outside world 'However,
to, the compuger, the input appears to be just another address o .
-which can be read at any time...just like ROM memory. The
only différence is that ROM memory never éhahges, whereas an’ L
input port changes if the applied voltages change. h ‘
i . . , / . JUER .
. THE BUS ' . v .
: \ . o ‘ vt
"heQCPU‘cﬁntrdls all operations within the computer through”
"a set of wires knowr] as the bus. Within the bus there are three
' groupings known as the control bus, the address bus, and the
data bus. The CPU controls the flow of information within the:
- ;) % -
f .

Page -16/M0- 02, - . .o

e
-
'

.

\ / / .
. computer througH\two basic operations: £:ading~an¢ R

»

‘writing. 'When it needs to read information, it generates

signals from the gontrol bus which say, in effect, "give
the CPU information now." At.the same time, it places the€
address, from whieh the data should be read, on 16 address’
lines. , Then it waits for the external circuitry to re- -
trieve the information and put- it on the. 8 lines of the °
data bus. ' This eperation is i;iusfreted in Figure 8a.

(a) Readjoperations; “

16 Address (OSOOH) ')
7 - - » Address -bus
’CPU "Give me information"
The Pnformation (7FH) .
:}8 °' - Data bus

—» Control bus

(‘l

~

(b) Write operations: - s -
' —1, 16 Address (17QOH)

’

-

> Address bus

(4
BN ST U s 3 . 3 "
CPU Save-this information

1T . The information (7F
- \ [%78 (7Fy) Data bus

Control.bus

Y

4

It

C o~ , /v
) v . - ¢ P
JFigure 8. Bus Signals fgr Read-and-Write Operat;n?s.

(. . . ‘(

~ When the CPU must store 1nformat10n somewhere, it
generates a signal on the control bus which says, in’ effect,
"write or _save. this 1nformat10n At the same time, it puts
the address (where the 1nformat10n should be stored) on the
address bus and places ‘the data (the 1nformat10n to be stored)
on the 8 lines of the data bus, as shown 1n Flgure 8

- » -
t . ¢ v * . .
? N
N

sy : < .

CPU ARCHITECTURE

To understand how the €PU adccomplishes its dual tasks of
control and computation, the CPU must be examined. In the
following sections~of this module, some of the components
inside the KIM's CPU are detailed and the operation of these
components are illustrated.” Although the KIM is uged as &
specific example, the major architectural featurés are common -
to most microcomputers. ‘ -

" THE ACCUMULATOR

.] ,
The CPU coptains several special memories, calle?
ator,

registers. The most important of these is the accumu
or the A register. .. ’

The CPU cannot move data directly from one address_t5
another. If, for some reason, dafa must be moved from address
0300, to address 1700y, this would be accomplished in two steps.
The first step consists of mOﬁgng the data from 0300H to the
accumulator in the CPU. Then, in the second step, the data
‘is moved from the accumulator to 1700H.° In this example, the
accumulator is use€d as a convenient intermediate plgce’;b put
data while it is being moved. " In btﬁer situations, the
accumulator is used to store one of two numbers to be added,
and to store the result of the’ addltlpn

The KIM is an 8-bit machlne, its accumulator holds 8 bits
of data.

Page 18/M0O-02

THE PROGRAM COUNTER

.
* N ° »

’ . A second important CPU register is the program counter, -

or PC. The PC always holds the address of the next instruction
to be executed. Normally, instructions follow one another in
sequence. Instructions can be 1, 2 or 3'bytes long. There
are circuits in the CPU-.that examine instructions and determlne
the number of bytesth each one. This number is automatlcally
. added to the PC to get the address of the next instruction.
. ‘ However instructions do not always follow in sequence.
} In these instances, the PC must be altered to hold the address

of the instruction that is not in sequence. This is accom-
pllshed with.-JUMP and BRANCH instructions.
_ ~The PC holds an address. Since addresses are 16 bits
long, the PC is a 16-bit registex. . -

3) . Qn'
THE INDEX REGISTER
The final CPU register discussed in this module is the
X index register, or X register. Like the accumulator, this
reglster can be used for temparary storage, but it also has
other 1mportant functlons Because it is a“data reglster in

: {
the KIM, it ‘also is 8-bits long. -

- “ s
A,

EXAﬂININQ CPU REGISTERS

“Programs seldom work correcfly the first time. To" help
find .the errors, or " gs" as they are’'called, the KIM has a

~single-step mode. In the single-step mode, the execution

sequence of the CPU is held in suspension after each instruc-
tion by a WAIT signal.

71 MO-02/Page 19

. . " . 1\
¢ 9,

+

simply examine the contents of address 00F3

When single-stepping through a program, it'is sometimee
useful to be able to examine the contents of the three CPU
registers discussed. The reglsters do not have addresses, so
the usual method of examining the contents of addresses does
not work. The KIM monitor solves this problem in single-
stepping by displaying the PC, storing the accumulator in
address OOFSH, and storing the.X register in address OOFSH
This makes .it p0951b1e to examine the progress of a program
between steps. To determlne the contents of the accumulator,
— they will be

H
the same,

[

®

ASSEMBLY AND MACHINE CODE
The instructions understood by the C§U are called

machine instructions, which consist of a l-byte op-code

followed by zero and one or two bytes of data called the

operand. Each op-code has a fixed number of operands that

‘must be supplied.

It is quite diffitult to interpret the machine code
directly. Programmers usually use short abbreviations for
the op-codes, called mnemonice. For example, an instruction
Toads the accumulator with data at some address in‘memory.
The machine code for.thie is 1010 llqig,'or ADH; but the
mnemonic is LDA (LoaD Accumulator), which is much easier to
remember.” Table 2 shows a partial listihg of the "instruction
set? of the MOSTECH 6502 chip used by the KIM-1 microprocessor's
CPU. L Lo , '

It is also convenient to use numerical addresses. Usually,'
data stored at some location have some particular meaning and’
it is easier to give the address a name that is related to

the meaning. For instance, port[A on thé KIM is at addreSS

& [}

)

Page 20/M0-02 °) | -
$ S Z- A

9 .

1700H.' It is convenient to refer to that address as PORTA,
or PA. In this context, PA is called a label, or a symbolic
address. .

A program written with mnemonics and symbolic addresses
is called an assembly language program. The KIM will not

understand an assembly language program; such programs are
simply conveniences for-programmers. Any assembly language
program must be converted into machine language before it is
entered into a computer and executedé This conversion process :
is'called assembly. Computers can be programmed to perform

assembly, but this module will show how it is doné "'by hand."

%
A SIMPLE PROGRAM
Table 1 illustrates a short program written in ‘both
asbeﬁbly code and machire code. The assembly code version
-of that program will be examined first.
TABLE 1. - A SHORT PROGRAM.
ASSEMBLY CODE MACHINE CODE (IN HEX)
Label |Mnemonic | Operand Agéress Op-Code| Operands Comment
-} START: INX 0010 E8 Adds 1 to ,
i) . .] X register
STX .| PA ° 0011 - 8E 00 17 | Stores X in
‘ port A
JMP .| .START 0014 4C 10 00, Re€¢urn to °
)) start {
o N
. . ' W
- - 4
T é
73 . 'MO-02/Page 21 ‘
. .‘) .) . .

/ \

Ry

’
@ A}
L4 -
e
~

The first mnemonic is INX, the abbreviation for "INcrement
the X index register by one'"; that is, add one to the X register.
No operand 4s required. After doing this, the CPU will STX,
which is ‘the abbreviation for '"STore the contents of the X *

index register at the address given by the operand." The
operand‘is PA, so the instruction transfers the contents of
the X register to-the output port A. This operand is an
address, so it requires 16 bits or 2 bytes.

The final instruction is JMP, an abbreviation for "JUMP

(go directly) to the address given by the ooerand " The effect

" of this instruction is to load the operand into the PC This
is a case where the next instruction is not in sequence The
operand is START, which is the symbolic address given to the
first instruction. As a result, the following instruction,
executed w111 be INX again. .

This program, then, is an endless loop It adds one to
whatever is in X, moves the result to the output port A, and
then repeéts the process endlessly.

Now the assembled machine code version of this program
is examined. The first problem is to determine the starting
address for the program. In this example, 0010H was chosen
arb1trar11y Y

Op-codes for the mnemonics used in this module are shown
in. Table 2. This table shows that the op-code for INX is E8H,
so this will be stored at address 9010 No operand is.needed
for INX, so the next Instructlon starts at 0011H In tHis
address, the op- -code for STX (8EH) is stored STX needs a
2= byte operand, the address for PA. . The address is 1700H’ ’ ’
but it is entered with its bytes renersed; 00- in OOIZH and ~

17 in 0013y. The KIM's CPU always requires addresses in this
" reverse byte order, which is another reason that assembly-
language is easier to read than machine codes.

14

74

Page 22/M0-02

TABLE 2. TYPICAL IIM INSTRUCTIONS.

.

! | OP-CODE

MNEMONIC , MODE !(IN HEX) MEANING

ADC Absolute © 6D Add data at the address given
by the operand to the accumu-
lator with carry.

AND Absolute 2D AND the accumulator data with
data at the address given by
the operand.

ASL Accumulator 0A Arithmetic shift left of the
accumulator. Shifts 0 into
bit 0, bit-7 into carry.

BEQ Relative FO Branch if equal to zero.

CLC Implied . 18 Clears the carry.

DEX Implied- CA Decrease the data in the X
index register by one
(subtract one).

INC Absolute EE Add.1 to data at the address

- o given by the operand.

INX Implied E8 | Add 1 to the content¥ of the.
X index register.

JMP Absolute 4C The next op-code is at the

® address given by the operand.
LDA Immediate A9 Load the accumulator with the

, operand. .
Absolute AD Load the accumulat with data
. .| at the address given\ by. the
operand,. . .
LDX Absolute ///4é Load the X at the address
P) given by the operand.
LSR Accumulator 4A Togical shift right of the
accumulator. Shifts 0 into
) . bit 7; bit 0 into carry.
STA: Absolute 8D * | Store the accumulator data
’ at an address given by the
. operand.

STX Absolute 8E * Store the X register data at
the address given by the
operand.)

.

i

MO-02/Page 23

- ¢
L} »y

'y

[

The JMP- instruction op-code is 4CH. The operand for

thié instruction is the address of the first instruction

whére the label START is. is address is 0010H, which is
entered in reverse order into addresses 15H and 16H.~

/

}4

EXAMPLE C: PROGRAM ASSEMBLY. . P

Given:

%
{ Find:

PR

. The fdllowing assembly language code.

FIRST: 1INC PA

JMP FIRST
The machine language version of this code.
Start the code at 0300H and use 1700H for PA. 9

Solution:

ADDRESS |HEX. OP-CODE| OPERANDS

0300 EE 00 17

N

0303 s 4C) 00 03

N

LY

The two op-codes are found in Table 2.” The
operand for INC is 1700H, but this is entered in
reverse-byte order. The operand for JMP is the

address for the label FIRST, 0300,. This, too,

H
is entered in reverse-byte order.’

.

BRANCHING AND IMMEDIATE DATA

— W

_+ " The proéram\just discussed is quite fast. The output
will imcrease every 9 mic%%?econds. If a dlower rate of
increase is needed, one way to accomplish this is to have
the computer waste time by counting a certain amount each
time dround the loop. Table 3 illustrates this.

. “
R
]
L} .
.
- A) =

. Page 24/M0-02 N

-l

TABLE 3. A SLOWER PROGRAM. -

1

ASSEMBLY LANGUAGE MACHINE CdDE IN HEX)
) Mnemonic : Op
X Label |. Address | Code | Operands Comment
" Operand (IN HEX . > o
START: |- INX "~ | o020 ES "~ . |Increment X
©] STX PA 0021 ¢/ 8E _ || 00 17 |[Output result
LDA #8 0024 - | A9 08 Set count to 8
, STA COUNT |{ 0026 8D 34 00
CYELE: | DEC COUNT |{o029 ' CE 34 00 f{Subtract 1
> .| BEQ Jump |joo2C’ | FO ~ Cycle back, if |
) - ‘ . not zero
. CYCLE || 00ZE- 4c 29 00 :
JUMP: JMP START ({0031 4C 20 00 rIf.zero, start
over ‘
i) . A
. The program is easier to understand from its flow)
schart shownh in Figure 9. This program is like the previous
one, ekcept that a new loop has been added. In this inner
loop, 8 is stored in some address, called COUNT. .Then one is
subtracted from COUNT. "If the resuli is not zero, the program
loops back and subtracts one again. It keeps subtracting one
until nothing is left in COUNT. It will také’gzgimes th}ough
the loop for COUNT to become zerd. When it is finally out of
v) this'.inner loop, the program s;a?ts over and increments X. . .
.- —— v
\
) \ 7 . .
_ r g ’N
o C .‘4
{ -, . ‘ . . N ’ .
- .- g ;" M0-02/Page 25 -

START . -

=T | «
. INCREMENT X '

P
MOVE X TO PORT A

) OUTER | ' T ‘ (

) Loor STORE 8 IN COUNT

5 B -
. SUBTRACT T FROM COUNT |

\ Y) INNER LOOP) -
YES R \Ng < n:
o ——=<C s THE RESULT ZERO 7 > / Ly \

.

Figure 9. Flow Chart of the
Program in Table 3.

rw s

The net effect of_éhe.inner loop is to waste time
subtracting one from COUNT eight times. Each subﬁ;action
takes 12 microseconds, so this program wastes '96 m;croseconds.
The .number of subtractions is determiqed by the number initially
placed into COUNT. This example shows 8, but larger numbers
could be used. If FF ’
would result. '

N ‘In the assembly code shown in TaKle 3, the first two 1n5%§PC'
tions are the same as’ the program shown in Tabf\\ . The, third

were used, a delay of 3,060 microseconds:

—_N

H

¢

" instguction, LDA ‘#8, 111ustrates a new. concept. The ef);ct of

this instruction is- to load the operand 8 into the accumulator.

, This is dlfferent from the- 1nstruct10ns gsed so far, where the

_operand was an address of data. Here, ﬁ%e -operand is the data.
Use of the. operand is'calied immediate addressing mode,

because the~data 1mmed1ately follows the op-code. The pound
s, sign (#) is usually used to ‘'signal "this mode and dlstlngulship
\ w. / =
. o ~
’ \) : ; . L /

‘Page 26/M0-02 . . ’ 78

2

addre

/ ’ - -

°

it from the absolute address mode used 'ously) In the
absolute addressing .mode, the operah@ is the addréss of the -

-

data,/ ™ .

//;he fourth igstruction in Table 3 is STA'COUNT. STA-is
like ﬁgg in that it stores the contents of a register at an

s§ given by the operand. The difference is that this

stores the contents of the a;cumulator,'rather than the X
register. STA and STX.have different op-codeET_\COUNT is a
symbolic address. When the prograﬁ is assembled, the address
0031H will be used for COUNT. .
DEC is an abbreviation for DECrement and means, 'subtract
one from the data at an address given by .the operand.” . Thus,
DEC COUNT subtracts one from data called COUNT.

BEQ is an example of another type of instruction,.

-]

a branch instruction. This kind of instrfiction can take one

-

of two possible routes through the program, depending on some
Tesult.

BEQ is an abbreviation for "Branch if EQual to zero." o .
This instruction checks the result of the last arithmetic the

" CPU performed. In this case, the last arithmetic was perfonmed;.
by the DEC instruction. If the result of that operation did

v

give zero, the program branches. This means !ﬁat the next
instruction is not the .next in sequence. The full instruction
is BEQ JUMP, which indicates that if the branch is taken,

the next fnstruction s found at the_.symbolic address JUMP.

So, if the DEC instruction does give zero, the program next

n at JUMP. This restarts the outer

4

executes the instructic
loop. . . _
When DEC does not give zero, the instruction following
BEQ is execupd. This causes the program to cycle back to

the label CYCLE where it again decrements COUNT.

ref

. 79

e

MO-02/Page 27

The assembly'of this program is:relatively straightforward.
The program waswstarted At 0020. It should be noted that the
~ operand of the LDA# instruction is 08 and is stored in address
'0025‘ To change the delay, the number could be altered ¥ The
opegand for the BEQ instruction is FBH, which was cal@hlated
.- as the number to-add to the PC if the branch is taken. Wh11e°
‘the BEQ instruction is being executed by* the*CPU, the PC is
set to the next, instruction in sequence — 1n this - ‘case, 2§H.
If a branch is taken, the«operandros is added to 2E

H : H to
give the next instruction.

.PC value — 2E; 1110

-

0001 = 31H;—>»Address of JUMP

BEQ operand—> 03, = ' _ 0011 ’

AN

/} : a

_EXAMPLE D~ BRANCH AND IMMEDIATE INSTRUCTIONS

:hven: The folrow1ng program segment:
LDA #00
‘. STA 1701
TEST: LDA- PA
BEQ TEST
.|Find: - Its effect and draw a corresponding flow chart.~____

v

Solution: The first two instructions place 00 into 1701.
This makes PA an input port. Then, PA is loaded
‘into the accumulator. If the acecumulator is not
zero, the program jumps back té TEEE: where PA
{s again loaded into the accumulator. As a re-
sult, the program will endlessly test PA until all:
inputs are zero. When at least one PA line is hon-
‘zero; Ehe‘progfam will go on to the next instruction.

28/M0-02

.

D

Example D.

Continued. o™
J

ELOW DIAGRAM:

Make PA an .
input port

S f:'::‘ff‘??zn-\, =
% o o .~ NI T . .
)»‘ /’« ko] -
=¥ BXAMME Ef . BRANCHADDRESSES °
Given: ' Thef%q&}gwlqggmacplne code: ‘ [J
- ’ \~
© '} AddEBss " |1 0p-Code Operand
SR ST - JFO 07"
R —r— s :
v 3 oY
Find: @ 7L.S qf~ he - next 1nstruct10n depending on
< % ‘t - - ’ p
~ which branch fs-taken. L ; ,
So}utieﬁrh.Thls instruction 'is the BEQ branch 1nstruct10n If

the result of the last operatlon is zero, “the next
This is at
address,OOZZH, two bytes beyond the address of thls

instruction in sequence will be used.
instruction. If the result is.not zero, the ‘branch
Then, the operand 07, is added to the

address of the next instruction in sequence (OOZZH)
«

is taken:

to get the follow1ng

~—~—__Example E. Continued. . . v
= 7
The result is 0029, the address of the next
~instruction if the branch is taken.

L ‘ 13) . ‘ % N '
(~— - OTHER INSTRUETIONS ’

iThere is a total of 146 instructions. 2@9, IM's CPU can
execute based on the instruction set. ef the MOSTECH 6502 chip.
A careful study of these Ansxru&tlonsegs far.beyond the scope ‘shx
of this module; however, “theg%%?} everal references included
in thls module wh;ph.mhg Iﬁférested”student can use. In the ' -
following paragraphs**fZ%;gﬂasses of 1nstruc;aons are dlscussed ,é
in generayffﬁiﬁz‘ it - >
The iny arlthmetlc ogeratlons discussed to this p01nt

involve add1ng and subtractlng one. The CPU can also add or -

- subfragt -any two 51ngle byte numbers However, like most 8-bit
mlcrocoﬁi:ters, no 1ns€%uctlons are provided for multlpllcatlon-

on Therefore, shift left and shlft r1ght 1nstructlons

and div
can be used to result in multlpllcatlon and d1v151on by 2, as
shown in Figure 10 MosE;dG -bit mlcroprocessors announced after
1977 have built-in multiplication op- codes '

.
. .
i . y . 8 /~_\ e
L - .
.

- . >

42\= 0100 . 0010 Shift right *

Lo 0 f1-jo\fo}o 0 110 oj1]lofoJojo}l1]ol
o WL LY L L o 0= NN NN\ N
‘ 1lofololol1lo]ol= 84 ofol1]otololodr

J

~

-

4

ot ’

The Effec

re 10,

¢ <

A .
Addition can also be accomplished by the ADC command, which

is an abbreV1at10n or "ADd with Carry%" The carry is a b%t that

is used for multlple byte additions. To simplify this discussion,

thls_garry Bit w111 “be- ignored. However, to do this, the carry,
,/bif/ﬁust always be set to zero before using ADC. This is

done with the CLC command ("CLear Carry").

. The ADC command adds the contents of the accumulator

to the operand data. ,The result is left in the accumulator.
*,, For instance, if 03H is in the accumulator and 14H is in

address 0200, then the following instructions,

3

°

e
P .

cLe “ %

’ ~4+ ADC 00 02°:

»
resuLg‘in the sum, 17H, being placed in the accumulator

Multlplqcatlon and division can be accompllshed ‘in a
program by comblnlng shift and .add operations. For instance, -
“to multrply 1E .by’5, it'is shifted left twice to multiply
by 4; thenvthe or1g1nal 113H is added to get the result '96H..
This é6peration is shown in Figure 11. In checflng this
resnlt,oone would convert to the more fam111ar dec1ma1 code.

{ The problem ‘becomes 5 t1mes 3010, which glves 15010 — the
)
- i decamal equlQralent of 96H @ s .

2 o s

lEF =7 0001 ~ 1110« 53°£°)
shift’ left 0011 1100 (60;,)
shlft left 0111 =~ 1000 (12010)
add” 1B .+;9001‘i 1110 " (+30,,)
result 96, = 1001 .0110° (1501o)

-

L

>. Figure 11. Multiplication by 5.

¢

T EXAMPLE F: MULTIPLICATION BY ADDS-AND SHIFTS. =
Given: An assembly code that results in multiplication.
Find: Multiply a number in MULT by 9;\using adds and

shifts. !) .
Solution: Nine is'8 + 1, so multiplication by 9 is the same

as multiplication by 8 and 1 addition. Multi-
plication by 8 is donme by three left shifts since
egch multiplies by 2. The following code does it:

LDA MULT Put MULT in accumulator .
ASL A Multiply by 2 Muitipligs
ASL A Multiply by 2 by 8.
ASL A Multiply by 2

cLé } Add MULT to result.

ADC MULT Answer is in accumulator.

. A second group of computational op-codes are called

»

-

logical operations, which include OR, AND and XOR (eXclusive -

_OR) 16gic operations. Each operatlon is applied to 2 bits.

If these 2 b1ts are called P and q, then "p OR q" is 1og1cal
one, 1f either p or q is-logical one. Sigilarly, "p AND q" 1is
one, 1f p and q are both oqb Flnally, "p XOR q" is one if
p or q, but not both is one. - :

In 8-bit computers, thesé'logical operations. are applied
to.8-bit data. In this case, the operations are performed,
bit-by-bit as illustrated in Figure 12. In this illustration,
_each bit of the result_is found by OR-ing, AND-ing or XOR-ing
_the corresponding bits of 91, and D4 '

>

‘—

-~ Y e Q‘
N e -
L4 3
- ° 3
') @
. ,)
;
| .

R

el

91,
(a)
D4
91,
(b)
D4y
\
91,
(c)
Déy

= 1 0 1 : »
KQR) [SORD
. 7

={. 1 0 0

1 o 1 o= opsy |

91.. AND D4,, = 90,)
H H © %
=,1 - .0 0 1 0 0 0,1 3
AND /AND /AND /AND /AND /AND /AND /AND
=t1 {1 0o |,1 0 1 0 0 «
.)
1 ‘o 0 1 0 0 0 0 = 90,
. .
91, EOR Ddy = 45, R
3) B h
=,1 ,0 0,1 ,0 o ,0 ,1
OR /XOR /XOR /XOR /XOR /XOR /XOR /XOR
&
1\ 1 0o | ,1 0,1 0-{ .0
0o M1 0o ‘0 0 1 0 1 = 45,

Figure 12. The Logical Qperations, OR, AND and XOR.

_Figure 12. gives the following information’

Figure 12b - The logical dperation AND.

L]

ol
|
'

in thé'rgsult is 1, if thé ‘corres-
ponding -bit of ‘either 91, or D4, is
Each bit

. : W
Figure 12a-.- The logical operation OR. Each bit .

N

1.

in the result is ¢, if the correspond-

3

i '

85 -

MO-02/Page 33

s d

!

o
>

N
Y Y
-

£

rxs

‘%- . - ‘ing bit of QlH and Qiﬁ are both 1.
Eigurgé}ZC.- The logical operation XOR. :Note the-
Teft-most bit in Figures 12a and "12b.-
N The result is 1 fot €ither an OR or -
4 - ° an AND operation. The XOR operation
. A ' ".allows the OR operation, but éxcludes
the AND operation; thus; the left-most. -
bi%bXBR operation }ésuit’is'o. - "

o

v _" . “, . : . Lo
\? . ' .
. EXAMPLE G: LOGIC OPERATIONS. -
Given: | The numbers 4C, and lb -] .
‘ Find: The result of applying AND OR and XOR*to these i
. B two numbers. " .
Solution: 4C = 0100 1100 . T =
1D = 0001 1101 - ° - L2 D
AND = 0000 1100 =.0Cy - S
4C = 0100 1100 °* o
1D = 0001, 1101 L
OR'= 0101 1101 = 5D’ L
4C = 0100 . 1100 . ' T .
' 1D = Q081 1101 % .)j -
\ , \)
1 XOR =%0104. 0001 = 51 S ,
! ' « ,
|) ‘
|) - ¢ h
’ e
] }
- ~ 4 ¢ . 4
. S¢

'EXERCISES

1. What digital ﬂumbe; produces 13.1 V from-a -DAC which '’
generates 0.08 V'per step? .) N
2. What voltage”is produced by a DAC which generates .010 V,

‘per step when the binary equivalent of 17F, is applied?

3. Kssemblé the following code into machine code, starting
at OOSOHu Use address 0310H for SARAH. ‘
N - . . E
SAM: LDA #FF
"STA SARAH
JMP SAM : :
4. What is the address of the 1nstruct10n executed after |
the follow1ng// ' . . ’ -
x -7 Aqﬁféss OP-CODE OPERAND:
‘ 4} 00F0 | . A9 4 01
" 00F2 i Fo. 20
5. rWrite the assembly code that multlplles the contents of
'L BILL by three. _— o
6. Find the result of the- follow1ng'T1n hexadec1ma1) ')
. 01y OR 30y) : o \i
b, 78y .AND ,87H , S \6 :
| c. 47y XOR - FAH o) .
., - . . - ’ “Q .
Y d. 7H 03 llH . . T j
- . , .
» * : . ‘
] -° vj'\, ¢
' - !
. . r MO-02/Page 35 N
. - 87 o
3] N

LABORATORY MATERIALS

Microcomputer (Commodore KIM-1). ‘
‘Power supplies: 5§ volts at-1 A (TERC PS-00%)
- +12 volts at 100 mA (TERC PS- 012).
- » Cassette -tape recorder (Sanyo ST- 45) ‘ -
Software on. cassette taPe) ‘ . ‘ .
Connections to KIM output ports, power and tape recorder.
Breadboarding system (TERC KIM-iOO),

. LABORATORY PROCEDURES

L

'features of the KIM-1"microcomputer. RAM is used to store
data and ROM 1is examlned Then a prograﬁ\is loaded and -
"executed one step -at a time. The effect of each instruction
1s predictéd and checked against the KIM's operation.

The se;on& laboratory examines the effect of additional
instructions - ThlS level of understandlng is important in ~Z
tracking down program errors. A program with errors is then’ '

examined ana corrected.

The first 1aboratdry explores the primary architectural /’\Qh?f)
&

¢ - . '

.IMPORTANT: Read‘@gtire pgragraph(é) before carryiﬁg 4
out each numbered instructien.

4

. i b ,
'LABORATORY 1: ¥ KIM ARCHITECTURE. o

i “; y o L : ‘'

R Make the connectlons to the KIM-1 shown in Figure 13,
All connectlons to_ the KIM are made through the KIMBOARD. / -
ALWAYS CONNECT GROUNDS FIRST Run a wire from the ground .
connector on the KIMBOARD (it has thé,legend "GND") to

the minus and ground terminals on the +5 V power supply. . e
\ < . ~J . v

.
4 . .
- 4 ‘
. ’

Page 36/MO-02

If more than oné pbwer‘supply‘is used, interconnect

all their gnoﬁnds.' Next, make sure the power supplies-

are OFF. Then connect ‘the 5 V supply to the #5V
termir\lall on the KIMBOARD. Connect the +12 V supply to
the +12 V terminal. - Plug the KIM-1 into the KIMBOARD. -
F.?'.nally,“connect the interface board to the KIMBOARD,
using the 20-conductor pink ribbon cable. Be sure to _ .
insert the-two white connectors the same side up. £

Recheck a1 M‘cions very carefully.

s
’ 4

) - Fe
TO +5V y AN
s TO GROUND
b TO +12v
* . ‘\
PORT CONNECTIONS '
_(PAC, PA1, ETC.) KIM-1
MICRGCOMPUTER
’r .
o\ C
Q
[o% - 12 f+6 II
e R GND . :
oo B .
. 00 -
o o - -
[c o)
o 0 .
oo 20 CONDUCTOR . .)
O \ - i’
. CABLE , L—Jyw ".
INTERFACE. BOARD ; K i TT— :
(18-100) . KIMBOARD / . =~
/ (KB-1001— / . .
- / [rd
N . / N
’ "
<—TAPE RECORDER
s J h
L}
. . 4 t -
- .)
Figure 13. KIM-1 Connections.

y -
: o . °

[. .

. Mb-02/Page 37 .

- ~ -
L
. .
.

P '\QN;L Turn on and reset the KIM. Apply power to the KIM and
press the reset button marked "RS" on the keybgard. The'
51x digit djsplay should - light. 'If it does not, quickly
remove the power and get ?elp

3., Read ROM‘memqry Try writing into address 1800

Q

o ; , H
\L‘\J : (Refer to the instructior in Modile MO-01 for help in
: , ‘.u51ng the KIM to do. thls } It is not poss&ble because

1800H addresses read- only memoty. -What is Qbéerved?
N Read and record in Data Table 1 (ROM Memory) the data“
in the 16,, addresses, starting at.IBQOHZ Try térread the

data in address 1000H. Is this a ROM address? Read and

record in Data Table 1 (ROM Memory) the data: in the 16,,
addresses, starting .at 1Q00H. How' is this different from

/ the data at 1800,? Is it possible that neither ROM nor

RAM is at these addresses? Egplain.s‘». ‘

».4." "Find RAM memory. Verify that,aﬁd;esseé 0306H and‘Q‘SOlH

H into both and then
checking back to see if the data is unchanged. Repeat

with FFH as data. Now see if 0400H contains RAM by "try-

. .ing to store 00, and FFH'ét that address. What is ob-

served? Record any observations in Data Table 1 (RAM

» memory). Use this procedure to find the addresses of-

all available RAM memory. (Hint:. §ome RAM memoTy 1is

) within the range 1750H to 1800,.) . '
5. » To make port A an output port, FF must be stored in address

contain RAM memory by writing 00

.~

i

+ 1701. Then change address 1700 to 00 to assure 4 00. count
for start1ng,the£$rogram in Step 6.

6.- Load in the progrdm jn Table 1. This program starts at ¢
0010 with the op-code E8. The succe551ve bytes in the ‘
prygranm, starting’ with the flrst, are as follows:

E8 .8E 00-17 -4C 10 00 .
- . N
INX .- STX u?or? A JMP 0010

The last 00 should be dn-gddreés 0016y. Enterazhis\pro~
gram{and doub@e;chépk that it is correct by reading : .

’ : '\/
. AN ¥
* . i

Page "38/MO-02-.

l through all 8 bytes

e

\-

Single-step through the prqgram The computer. can be

stopped after it performs each 1n§trugtion. Do the

following: - s) .

a., Put 00, into address 17FAH S : N

b. Put 1CH 1nto address 17FBH B

c. _§Ilde the 51ng1e step switch on the keyboard to.
the GN‘p051t10n . ¢

d. Display address 0010 the startlng address.

H’

"Now edch.time - is pressed, the computer will execute

-

the instruction indicated-.by the op-code displayed in
the fiéht‘pair of dﬁgits. - Press r‘epeatedly‘. Only
three-instructions should be seen, — E8, 8E, and 4C
alternately. Find out what the program does to the PA
lines by doing the follow1ng
a. Measure the voltages on the 8 PA 11nes :
b. Convert these voltages to a hexadecimal number o
and record the result. A
c. Press GO three tlmes in 51ng1e step mode.
d. \ Repeat Steps (a)s; (b), and (c) three times.
Instead of measuring voltages in Steps (a)\and (b);
directly read the hexadecimal yvalue in address 1700&
After this is done, press - ’ before pressmg ,
to execufe the next step. What contlusion is made con-
cerning the net effect of the program?

Examine the effect of each instruction. Now examinethe——————;

effect of eac% instruction in detail, Beforelstartin%,
load the X index register with 00. This can ‘be done by
placing 00H at address OOFSH ¢ Before executing a step,
predict the. effegt of that step on .the X index’'register

and port A. Next, execute the step and then examine the .

accumulator X index register and port A (addresses 00F5
and 1700, To exectite the next step, press - to

/,H-

»l

. MO-02/Page 39

~

. —

7

' . N v‘l - . ‘\
restore the PC registe; to the display, dnd then press
- . Repeat he process of predicting the effect of

4

- each step and then checking the result for 10 instruc-

4

.tions, starting-at address 0010y, Record all’ resylts
in Data Table lﬂgfingle Stepping). '

: . .

. . , _

‘4. L.

1 2

LABORATORY 2:- INSTRUCTIONS AND 'TE,QOUBLESHOOTING':

-

v

- Wire up the KIM and apply power.)
Load the test program from tape. A cassette tape con-
taining the program illustrated im Table 4 will be pro- -

Md the program into the KIM.

™, . : »

, TABLE 4. A TEST PROGRAM:

A\s?embi\fc/o}e\ -Address Machine
LDA = #00 /0300 A9 00
STA COUNT || 0302 8D 00
LDA #FE .|| 0305 A9 . FE
STA VAL . 0307 8D o1
"STA 1701/ 030A 8D 01
LDX L 030D : 02
LDA #01 0310 A9 0%
AND 1700 0312 2D 00 .
BNE TEST 0315 _ FO0 .F9
INC ”NNCOUNT‘ J) 0317 EE 00.
R\ VALY 031A 4E 01 .
EX \ = 031D CA
‘B LOOP 031E D0 F7.
JMP) START 0320 4C 05

Ly T

A

(

Page 40/Mo.-§§' O

¢

, . 3. Single-step through the program. Before starting the
program,, load 2, intg address 0002,. Then single-step
through the program, "starting at address 0300H Before
each step, predict the effect of the step; after each >
;Eéord the contents of addresses 0000, 0001, and

y 2
the A and X regisfers. Before executing the code at

step

a wire from PA [to ground What
5
ave on this step? is¢onnect the wire

4. Figd the errors in/ Table 5. As another exercise, try
to fiﬁd'errors’in the assembly of the section of~a—
ﬁrogram listed in Table 5. Perhaps they can be foun

through close examination; but even if they are, load
the program into the KIM and try to single- step through
it. -How can errors be recognized using single- stepplng?
Find and.correct thg. errors. Record answers in Data

Table 2 :(TroubTeshooting).) :
- S

-

-/ TABLE 5. CODE CITH ERRORS.
? < | Assembly Code Address Machine Code
START: LDA #07 0200 AD 07 , 1
AND 1700 |- 0202 20 00 17 |.
BEQ START 0205 _ F0 FA |

-
LA . > ‘ ~ - ot
RN A Ful Text Provided by ERC N - .
R T , S B
SSRGS e -)

SANNRY N -

L
DATA TABLES - ‘
4 ~ DATA TABLE 1: KIM ARCHITECTURE..
STEP 3: ROM MEMORY -
* 7 What happens when writing at 18007
I .
Data starting at.lSOOH: .
; - ADDRESS DATA ADDRESS DATA
' . - * '
. - o _ P & R |
T _ / JAi
- 3 i
AR
(- '
N : — 3 e
o ¥
' Is 1000' a ROM address? Justify: -
o ')) ,0
‘ Describe the data-starting at IOOOH: . . .
. \l v ’
. Explain any observations; [
-, 2 - Y e '
— ¢ o .) ’ ’ - . 3
STEP 4: , RAM MEMORY i ot
.~ " Does 0400 contain RAMY
)) |- RAM addressés in the.ranée 1750;‘— 1800y:,
2. 'l EepTaih the procedure: "
-; . ‘ ~“ - . ': . ‘) : i) 0
\ - v /- !
:) - L/
[} L] ——

&~

Yo

M ‘ .W —
2 , /
Dat.a- Table 1. Continued. . °
’ STEP 7: SINGLE STEPPING
‘ Record all data below: (-
) N\ VALUES IN i
STEP ADDRESS OP-CODE A X PA DESCR;BE OPERATION
rs ’1 4 .
2 - 2
? N 3 .) - .,3-
4 7 !
. 5 -, B .
b 6 RS
A7] T
.. : 8 — R ‘ *&'
., ° , 9 a o { Iy o
! \ 10' ¢ v &=
] ’ ~
Iy 4 t N
'fr E
< \ \ ¥
- \ . ‘).,
* 'Y
-t E - . /
¢ N ‘f / 4
C
s _
14 a B
° ‘ﬂ ‘
o a o . a - '
' . ’ : MD-02/Page 43 ;-
Lo 95 ~ -
x‘" - ’ "R e }J . .
‘ ‘ s - : y

,
&
» ¢

)

)
J

TABEE 2.

a

%
-

.

INSTRUCTIONS FOR TROUBLESHOOTING.

3

STEP 3: - SINGLE STEPPING
Record all-data below:

»

a5 P v

, VALUES IN
0P -CODE X -] 0000

DESCRIBE
" OPERATION -

001

A

STEP

1

"ADDRESS

» fh))

Q . b
s

|

Wl I N|h|wn |[& NN

ot
o

[
[

[
[y

(
w\

= P

[anlll Lagd
v |~

i
(o))

>/

’,‘—l
-3

3

s

-

>

STEP 4: TROUBLESHOOTING ‘ L
How did single;stgﬁﬁing help‘findifhe?errorég :

7 - 3 . f' .
. . T N '

‘ ', e . ;l(° \ , . . .
‘ ' ; ' \\ g\ N ’ “
° %o {V , » - -t
b} 3 3‘@ .t ° ¢
X "3 [
* ! R v . . st ° .-
- * 2 v -
. A ' . .
; N L . 5 7
. . : T
. . »
Page 44/M0-02 -, , .. R . @ .
: - i o
0 M - M . 4 .~ » .
‘ SRS . o - 96 v '
- o 4 o ° A N oo
» PR [. @ - ’ 3
¢ PR Y LY . L. LAY .
P SN s, s
. ! AL L -

e

£

"Data Table 2. . Continued.t

N . . . N .
What is the correct machine code for this assembly

'program? B =
, ASSEMBLY CODE ADDRESS MACHINE CODES
“ |ISTART: LDA-#Q7 0200
AND 1700 '
BNE START
. A. . ’ A
4 : ‘ . »
/ v / "
!
< 1/ . . N t +
t Q*
1
/\ ¢
® R 1 *1
\

oL °

MO-02/Page 45

(l
.
.

-

REFERENCES .
— —— ; \

Caxtoni Foster. Mjcrocomputef‘Programming:' The 6502. Reading,
MA: Addison-Wesley Publishing Company, 1978.

KIM-1 User's Manual. Norristown, P%; MOS Technology, 1977.

Larsen, et al. ' The Bugbooks. E & L Instruments, 1975.

Lin, Wen C. Microprocessors: Fundamentals and Applications.
BEEE Press, 1977. ' o

Rao, Guthikonda. Microprocessors and Microcomputer Systems.
New Yorks Van Nostrand Reinhold Company, 1978.

R6500 Microcomputer Programming Manual. Rockwell International,
1978. o o

Soucek, Bramko. Microprocessors and Microcomputers. New &ork:'
John Wiley & Sons, Inc., 1976. , '

Waite, Mitchel, et al. Microcomputer Priggr. Sams, 19%6. .

Zaks, Rodnay. Programqing the 6502. Sybex, 1979. °

< : . : N (//.

"Page 46/MO-02 98

N

\ ENERQ»ZERVIEWCAHEPLOGY

”

M

- - e SN

~MIGROCOMPUTER OPERATIONS

- N

T MODULE-MO-08 |
+.* /. MICROGOMPUTER APPLIGATIONS

o
7l
d

ORD

o - INTRODUGCTION

A

. .

This module addreeses-two areas of applications partic-
"ularly well-suited for small microcomputers. The first type
of apﬁlication involves controllimg ‘machinery. Almogt any-
O§Ehtsg
power generating plants, a bank of elevators, traffic 11ghtéle ' .
.a home-heating system. This last example, a home-heating)

th1ng can be controlled by a mlcrocomputer stage 1li

~

system, will be explored in some detail in the course of this

4 module since it represents a typical microcomputer-control -

applicatiodn- in the area of energy-conservation. ’ . A
. The second type of application to be examined involves
data logging. In data-logging‘appTicationsi data are recorded

over a pgriod of time for later analysis. For example; a
micrbcomputer-b@sed ddta-logging system would be useful:in
predetermining energy needs at a particular building site.
By monitoring variables, such as temperature, wind veloc1ty,

» solar radlatlon, etc., 1n advance and over a long perlod of
time, this system-can store much of the important 1hforma- .
tion necessary to the design of‘efficient space-heating for
the }ntended structure. Laboratory work in t 1s module in- .

cludes using a data logger.’

. . -PREREQUISITES

'
e ’

The student should have completed Modules MO-01 -and .

|
MO-02 of Mlcrocomputer Operatlons. h e
‘ . . o Ty

\!q ,a'l‘
'\
1

* ’

\ . . .
\ - : . M0-03/Page 1

b . 7 -

- OBJECTIVES

-

Upon completion of this module, the studeat should be

abfe to: '

1. Distinguish between centrol and computational applications
of microcomputers; describe the hardware and sofxware re-
quiremehts for each type of application.

v

‘ 2. ‘Set up and operate a microcomputer system that could do *°
«the following: ‘ '
ag Control a home solar heating system.

. b. Log temperature, light and wind data.
! Define the following terms: X
Data-logger. ,
b. \.Transducers. 4 o«
c. Feedback. A
.d. Analog conditioning circujts-.
€. Controlled system.
£. Contfoller. -
g, Instability. %
h. Sensors. - -) R
g i. Actuators. :
. j. Site evaluation. , .
| k. Sampling rate. ' - .
L . oo T
.) >
. . é | V .
4
- . . .
< “ ’

Page 2/M0-03

.
>
~ v
. . ar
PN NS
® .
» -

. P

. . .

. ° . -
‘ .
‘ v

-

RO g - SUBJECT MATTER

o’

P 4

CONTROL APP;ICATIéNS

.
N
.r

Three typical centrol s st$ms are used as examples in
the material that follows. Thege systems control a pair of
‘elevators, traffic lights at an|intersection and a home solar-
\\beatlng system) - '
The elevator controller coritrols the motion of UM)gﬂeva-
tors in response to buttons pusHed by passengers. For each-
elevator, the controller also ogens and closes the ddor, lights -’
the appropriate indicators that {show which floor the elevator s
is on, and rings a bell just beflore it arrives at a floor.
A sophisticated traffic light controls the flow of)
peaestrlans and traffic by light{ing the approprlate red, green,
and amber "walk" and "don't walk{' lamps. "The controller Te- (
sponds to pedestrians through buktons which are pressed by
pedestrians who wish to cross thg street; it responds to .
traffic through buried metal det>ctors; and it also responds
to anOelectronlg clock which tells it when to expect rush-
. hour traffic, ’)
The solar- heatlng system cortroller provides heat when
the bu11d1ng it controls gets tod cool. It must also store
~ (in a storage bin) any heat generhped by collectors and
_ decide whether to use that- heat, dr heat from an auxiliary
hea%er,to warm the bui}ding, . .
e 4 4

-
1

SYSTEM ELEMENTS. -

f

The four elements 1llustrate in Fiéure 1 are part of
any”control.sysfem. First, therejis the controlled system,
the objects which are to be contr lled; in the examples,

MO-03/Page 3

% . L

L . M -
.

these are the elevators, traffic lights, or the building temw:‘
perature. The secpna element consists of sensors, or trans- ‘
. ducers,, which are used to determine if any control adjustments
‘ are necessary. In the elevator example, thésq are a series of
switches albﬂg bhe_glevagor shaft, which sense where the elevators
are and tHt buttons fhathpassengers pfess; in the traffic pro-- ¢
P blem, these are the detectors that are buried .in the ground
thdt sense when a car is near, the pedestrian cross-request
buttons,» and the clock. In ‘the hoﬁé heating problem, the
.sensors detect the temperature in the room ,that is being'con- .
-trolled.

Figure 1. Elements of a Control éyétem;‘ ¢

>
B

The third element in a'control system is the éontrolLer
‘*K itself, which is usmwally electronic circuitry that is capable
", of making control decisions based bn the sensor input.| In the
elevatér example, the controller decides whether any e eveator
is to go up or doﬁnz how far "it is to go, wheré it is to stop, . -
cand whether it is to open or close its doors. The controller
* bases ﬁts decision on what it knows about where the elevator
_is and whete it should be aqcordfng'to the requests that have
v ‘been ﬁade of Ait. .In the traffic 1ight-éxample, the controller‘

~
.

-

‘Page 4/MO-03 -) e

Aruitoxt provided by Eic:

I

. ~

. ‘ -

4

controls the turﬁihé on and off of traffic lights based on
traffic flow ary other information fed to- it through 'its

Sensors. Fina;?y, in the example of the’home heating system,
the controller detgfﬁines whether the house is to be warmed -

and whether there is heat available from solar .collectors;

&

and, if so, where it shetild go, In all of these cases, the *

‘controller can be a microcomputeY. Today, microcomputers are

usually used as controllers, because they lower the cost
while adding flexibility and sophistication.

. The last element in the control system are the actuators. . }
These are the devices which actually cause changes in the ;
contralled system. In the case of the elevatdor example, the

actuators are.the motors which raise and lower the various
elevators and open and close the door;: In the Fraffic lighf
example, the actuators are the traffic lights themselves and
their associated ;;rcuitryL In the example of the home heating

system, the actuators are .the.fans that circulate the air and *

. the/various baffles that can be opened and closed to determine a

LR

where that_ai; goes.] ‘

{ . - ' o

CONTROL THEORY , ' ‘ S , .
The control system ‘in Figure 1 is in the form 6f a loop, ‘

often called a feedback loop. The controlled system affects’

the sensors, and the controller uses this-input‘to~affect the

.controlled system through the actuators. S ' N

Anytime a feedback loop exists, there.is a chance fo}
instability where the controller causes léfge swings in the
cofitrolled system. An example of this instability could
occur in a room with a'heater and an air conditioner. If the™
controller ﬁere improperly designed, a drop in temperature.
‘could trigger a blast of heat. .If there 'is a delay in sensing
this, the room could get quite hof before the air conditioner

¢

MO-OS/Page‘. 5

. 104

gy © Mk

. o - LT -

-

was switched on. This delay could then freeze the room until
the controllef noticed it and-~again called for heat. N
-/ Thus, a poor controller can be very inefficient if itris ,‘ o
unstable. The study of feedback in control systems,with the
purpose of predicting and avoiding instability, is the subject
of the control theory; however, this important area of study
is beyond the scope of this module., (The student should be aware
that feedback can result in instability, under certain conditions).

<

THE SOLAR-HEATED HOUSE
* -) .
It is instructive to examine the solar-heated system in
some detail. Before beginning this, however, it is necessary -
" to understand something about solar heating and some of the
control problems involved.
T The major difficulty with solar heating is that it is
erratic; theref(re, it is necessary to store the heathgeﬁerated
T by the sun so that it can be used at a later time when there
' miéht not be suﬂlight available. Furthermore, ip is expensive
to build-a solar systeﬁ that is large enough to meet the energy
demands of several. consecutive cloudy days. The most efficient
approach is to have a system that
three days, and back up that system w

store energy for two or

h conventional heating
. %haf can be called upon in those times, when there is insufficient .
. solar heat generated. As a result, most solar-heé%ing systems
-t are dé51gned to ®over 40 to 80% of the 'space- heatlng needs of a
bu11d1ng and are backed up with a.conventional heating system
\ for the remaining load. i - :
-~ A controller for a solar-heated house has several functions.
It must do the following:))
1. Feed -heat into the storage bin from the collectors . e
whenever possible. - v , - y
2. Hear,the house‘when necessary.

~ E- 34 P

Page 6/MO-03 .. .o 105 AN\

3. Use the back- up»heater only when it must.
Figure 2Z 111ustrates a 51mplmfied hot-air solar system.
A solar collectot on the.left warms the air, and the tempera-
ture 1s monitored by an electronlg thermometer (fmdlcated by
T) A fan can direct thlS warm air to either a heat storage
b1n or to the house,.dependlng on the s€tting of.four baffles
(labeled B;~through By).. If By is open‘and B, is’ closed, the
fan draws air from the collector; when By is closed and Bj; is
opened,‘this hot air is directed to the/gtorage bin. The
storage bin temperature is monitored by an electronic thermo-
" meter (TB)[Heat is collecte&'only whgn the collector air
temperature is higher than the stordge bin temperature.

FAN

=
*

rigure 2. Simplified Solar Control System.

House temperature dis monitored by\theAthermometer (TA)z
To.heat the house, By, is opened and Bs is closed. The fan
draws air from either.the collector or storage bin (which-
ever is warmer) by opening either B, por B:. If the air is
not suff1c1ently wardéfthe back-up heater is turned on to B

JRE. U

-

 MO-03/Page 7

warm the air temperature enough to heat the house.

The four elemerts of this control system are as follows:
"1: 'Contrelled: House aﬁd bin temperature.

2. Sensors:. Three eléctronic thermometere, TA’ TB’ TC.

-

Controller: A microcomputer.
4: Actuators: th, back-up heater and four baffles;
A : By, B2, By, Bu., -
¢Figure 3-illustrates the information used by the controller
(énalog temperature from the three. sensors) and the information:

. L
genera&ed by the controller (on/off information for the six

actuators),’ N e ‘
In the laboratory éectlon, the KIM mlcrocomputer is pro-

grammed to perform this control operatlon. Instead of u51ng

.

\

program. The computer simulates reasonable values for the
“temperatures,,TA, Tgs an TC' The control progrém then turns
.on and off the actuators which are simulated by lights.

4 .
-

! ;A-—T-—)'FAN‘
«}——3~BACK-UP HEATER
RIR \5__>$1\ \ . -
B ——>8; ‘
Ygt——8y
“f' '~"~‘§‘<—->- B,

,'/

oes, the controller can be

, i

~
The prégram can then score how well a student does as con-

troller~ This can be made into’ a game "in which the student

tries to beat the computer; that)1s, do a better controlling GfgjL
job than the cqmputer. - ') '
f The rules of the game are as follows: .
1. If the room temperature is below 65°F, then heat is ,)
required until the room reaches 70°F. R ,
2, Room heat is drawn from the collector or the storage
b1n whichever is warmer. 5
3. The back-up heater is requ1red if the air enter1ng ,
" the house would bt below 80° P\w1thout the heater '
\4. The collector should warm the storage bin if the

collector is warmer than thé bin and the house is
g not being heated. j)
5.. 'The fan should -be off if neither the house nor %ge
heat storage bin is being warmed.

The* computer simulates a cold and partly cloudy day,and

a

dlsplays the three temperatures, TA’ f%, and TC On the ba51s
of these three changing. temperatures, the student must dec1de
how to adjust the four baffles, the fan, and the back-up heater
The status (on or off) ‘of each is ihdicated by a light and can
vy be changed by pressing a button. Anytime incorrect choices are

S

- made, an error light comes on. ~

~ The purpose of these programs‘is to illustrate that a
small m1crocomputer can be used for control. Thls example is o
slightly artificial since the computer does both’ JObS, it
performs the control and ‘simulates the controlled system. In
reality, the simulation would not be needed - which is a *
factor that would somewhat reduce the computatlon required
as compared to the erample. On the other hand real data .
would. be digitized with the computer (as 15 done in the next
data-logging example), which requires more hardware and pro-’
gramming than was required 1n the solar:ﬁ;use controlger

td

-
L " -
3

: ' |
- ' MO-03/Page 9

@ . ‘) *

C DATA LOGGING . !
Data logging is used Whenever it, is neces ér§ to record °
datéd for later analysis. The data is'usuallyﬁaccumulated
slowly over a periodyof time. . '
A data-logging device would be useful Ifi“the evaluatlon
of a particular solar panel, for example. To evaluate the
solar panel, the device would measure the temperature, air
flow, and sunlfﬁﬁt levels around the collector over a period |,
of many days; then a microcomputer would automatically recprd
this data and store them in its memory. The data could then
be regd out and evaluated ‘at+a later time.
. Another examQ&e/of data logging involves predetermining
. and evaluatlng‘energy needs at a partlcular building site. » To
design efficient space heatlng of a-structure, it is- important
for de51gners to obtain certaln 1nformat10n, such as average
temperature, wind veloc1ty, solar radiation, and radlatlve
cooling, from the intended building site itself. This ‘data is
best obtalned by actually monitoring these yariables at the, ,
1ntended 51te over a long ﬁerlod of time. A microcomputer- based
data-logging system can be used for this. " <
" As an example of this capability, a data logger - using
the KIM microcomputer - will be used in the laboratory to mea-
sure temperature. With slight modifications this 1ogger could
also be adapted to. measure the other-variables requlred for

!

site evaluation.
/

* LOGGER COMPONENTS . ')
¢ r -)
Most mlcrocomputer data logging systems contain the
co-ponents shown in Figure 4. A sensor, ‘br transducer, con-
. vd Tts a physical input, such as 11ght or temperature, into an

‘glectrical signal.- This signal is usually/too small to be -
sed directly, but analog conditiongggicircuits are used to
convert the signal into a form that can be used. A D-to-A
. ~/(D/A) convertor generates a l-byte digital equivalent ‘of

o /Qhe analog signal from the\ sensor. The mlcrocomputer regularly

samples this digitized signal and stores the correspondlng
bytes in Random Access Memory (RAM). The rate at which signals
- * are recorded is called the sampling rate. The recorded samples

can be recovered later, using some kind of display ‘device.
\

B SENSOR L—»| ANALOG > D/A L MICROCOMPUTER |—»| DISPLAY ‘
’ CONDITIONING CONVERTER |' | . ¢ 3
< — \
. . -
l‘ k
% Figure 4, Data-Logging Components. ©

\

\ .
‘ "In the laboratory, the sensor will be in the form of an
electronlc thermometer. The signal from this is amp11f1ed
. and drgltlzed. Five hundred and twelve samples are take/,at
various¢ rates. The results are dlsplayed as a graph of tem-
. perature agalnst time.
’ The sampling rate determines the total time recorded,
since 256 samples will always bé taken. If'five samples
are taken every second, only 51.2 seconds can be recorded |
With samples taken every 20 minutes, more than two days of |

-~

.

t .

MO 03/Page 11

* s * . "
' | 110

/ {
data\can be ‘recordéd.

'The samplipg rate should be adjusted to the time scale:of
the fastest changes to be recorded. thqe aif temperature rarely
changes significantly over a 20-minute period, this samﬁling rate
is sufficient. Sunlight can changé over a few seconds,as clouds
shift; therefore, it would require a different sampling rate.

Because thé laboratory cannot be extended two days, some
quick-chgnging'temperatures will be recqupd at higb sampling
rates. The same apparatus ¢ould‘be used at low rates for site

evaluation.
- 2

’
-

SITE EVALUATION

A full site evaluation requiring the measurement of several
variables ovér a period of several months would require much
more memory./—The conventional approach to this is to store the

~data on magnetic'tape.' Even a small cassette tape can store
hundreds of kilobytes. With a simple additdon, .the KIM can con-

. trol a cassette tape recorder and store the dataﬁan tape; this
‘fregs RAM memory for temporary data storage, which is then per-
manently recorded on tape. Thus, the 1-kilobyte memory limitation
does not limit the amount of data that could be obtained from a
site evaluation. ' ’

The above example illustrates the utility of using micro-
combuter-based data-logginé. The program can be storéd in less
than 500 bytes qf memory and the sampled data fills 512 bytes.

£

»

LARGER SYSTEMS

2
>

The student may wonder at this point why larger microcomputers
.are used at all if a small‘microgpmputer like the KIM can be

I
AN

»

Page 12/MO-03

117

used in so many diverse applications. This is because larger
systems have three important features the KIM lacks:
1. Computational power.

The "applications, discussed require little or) ’
no calculations. This is fortunate because
the KIM, like most Wicroprocessors, can 6n1y
add and subtract single bytesj Multiplication
functions and floating point precision are ob-
tained only through programs that may occupy
many kilobytes. : .
2. Flexibility. < - " -

The KIM programs used are fixed-purpose and
the result of much programming effort at the
; ' assembly 1éve1; as a re%ult, they are dif-
. _ ficult to change. Furthermore, the KIM can
be of little help in.the prégramming process.
Larger machines can®assemble code and be pro-
- grammed in intéractive, high-level languages,.
like BASIC, that make program development d

5 N '
modification much easier.
. = 3. Mass storage.
+ g “ ¥ .]
« .o . The cassette tapes KIM uses are ' not-a con¢

venient way to store many .programs because
they are slow and..not under direct computer
) control. Floppy-disks ‘are used with larger,
. systems to get around these limitations and
" provide millions of bytes of storage that can
. be accessed in a fraction of a second.

' . /’ .
X

’ s 112 A S

EXERCISES

-

Which of the following tasks could be accomplished by a
small microcomputer like the KIM? Justify the ap%wers
given.

a. A computer that would operate.the traffié‘lights
at an intersection.

A computer that tells a company.when to'deliVer

heating o0il to customers.

A computer that could determine tax and w1thhold1n£' //)

on paychecks for a small company.

A computer that would allow an operator to enter

address labels for a magazine and then type them

out in zip code order. ‘
What would be needed, in addition to the CPU, for each’
applicatfon listegd in Exercise 1. -

<

]

3

LABORATORY MATERIALS

Laboratory 1 and 2- |

KIM-1 microcomputer.. |

Oscilloscope with external triggering.
Cassette tape recorder.
Digital voltmeter (optlonal)

Cassette tape with cooling curve program.

PARTS

ICs: 741 opamp.

3140 opamp.

311 comparator.

1408 D/A converter.fr ' \
Fixed Resistors: .3 1kQ.

.S . 133k. v
' ﬁ "1 6.8ke. -
, "7 4709.
g ‘ 1 1.5kq.
Variable Resistors: 1:10kq.
l‘le.
Capacitoré: 1\.005uF. .
1 30pF.
7 LEDs | ‘

1 dlode with Teflon Inss\3t1on on' leads.

116- p1n DIP sultch !

B . |

N | .

12

-3

"~ LABORATORY PROCEDURES /.

-~ ~

'LABORATORY 1. CONTROL. /S

o
s

1. Construct the display.
As discussed br1ef1y‘1n the text, therglrst labora-
tory exercise will be to build a solar-home collector.
A special display; consisting of seven lights (lamps),
called LEDs, is needed to indicate the state of the
act&ators. This should be constructed and connected
to the KIM, as shown in Figure 5.

B1 ._JW\,——-_I()——-— PA1 o

O
‘ - -{} B2 3 ——-’W\r—'—k)—— PA2 .
0 B3 o —rvv\,—k]—— PA3:
~ 'O * 0 . J

3 B —AAN—R— PAs

— 4 f{} FAN o - —'W\,—-—k)—— PAS
e} HEATER ' _ —JWv—-{G— PAB -
O . ERROR . '———Jympv———+d——- PAT7

LIV _b .
.{a) Layout < e { b) Schematic
. , . -
Figure 5. Actuator Status Display. . e
. | &
When the lamps are on, they have the following
, 51gn1f1cance
’ B, tﬁrough By - When each of these lamps is oft, the
{ correSpondlng baffle (as labeled 1n ;
Figure 2) is open.
' , FAN - When the¥lamp is on, the fah is on.
\ . ' HEATER - When the lamp is on, the heater is om.
\ / ;
\ L 115" . M0-03/Pagé 17

Page 18/MO-03

EhROR - When i@corréc£ choic
"made, the bottom lam

" The solar house ‘controller s
indicates that B; and B; are clos
the fan is on, the heater is off

eTToTS.
Load the programs from-gassette t

2s. of actuafor§‘are

D' comes on. |
imulation in Figuré 5
*d, B, and B, are opet,
Fnd that there are no

gpe. .

Apply. +12 V to the KIM and ag
cord to the KIM's tape input.

The ID number for the solags
found on the tape.
then do the following:.

Enter this n

’

"tach the tape. player‘

home programs can be

1be;kin address 17FAH,'

» " Clear OOBIH.

, Start the tape loa

" Play the tape at f

Wher the KIM indicates addre
‘If address FFFF c
appears aftex 5 minuteg, try agai

read properly.

The manual controller game.
As soon as the program at 00

ing GO), the computer starts simu

of a day in the Iife of @ soldt h

operate the computer with a manua
make the correct choicé, of actuat
The s
and TCk as:

to changi%g sen;or,inputsﬂ
temperatures, TA’ TB’
the text. ,- ot

+To see what these sensors de
or C buttons on the KIM and the s

on the KIM:wil} indicate one off

6 illustrates a temperature on display.)

ature can be displayed at a time

E program at 1873Hi
11 volume and full treble.
5s 0000, the tape has ¢
pmes up, OT, Mo address'
1 »

)0, is started (by press-
lating a faster version

bme. The student must
L controller and must

arvsettinés in, response
snsors sense the.three
1é§e}ed in Figure 2 of -

tect, press the A, B,
even_segnent display

e temperatures. (Figure
Only one temper-

but any of the, three

are avallable at any‘;amé by pre<31ng the correspondlng

key - A, B,,or C for TA”TB’ or 1,

——"

116’

Co respectively,

e

N

* L -

= — 3 ~

‘ DECIMAL POlNT

o Iml e |
SR 1 1 T e P o Y] A

. Figure 6.. Femgﬁrature on Dlsplay
- a ‘ "
The state of the actuators 1s indicated 65 the six
LED lights connected in Step ‘1. To change any of these,
press buttone 1 thkrough 6. Each préss changes the cortes-
ponding actuator from on -to off or from off to on.
If the game:ﬁg played accordlng to the rules in the
‘text{ no errors will gccur. 1f mistakes are made, the
ERROR 1light will come on.
, 4 .Run_the manual game.
\

Run the program, startlng at 0000 once for practlce
L Then- run 1t agaln, trylng to control the.system. Each
. run takes about 5 minutés - an increase in speed of about 100
times. When the program finishes' a day, the score is dis-
played. Record this .score in Data Table 1 (bontrqller).

;o ?he écore is divided into thre parts, as illustrated
in Figure'7. The left pair dbf digits| indicates the total
time that the error lamp was on. ,The ceﬁter pair indicates

v ‘the total t1me that ‘the house temperature was out of range

| (65° to 70° F) The right-hand pair¥indicates§ the total time
fuel was'used. (The lower time thls shows, the less fugl was
© - consumed.) ¢ « s

. © * Each count <in the sc@Te corresponds to three seconds -

¥

. : of running time, or 15 minutes of simulated time.’

° . @
P , . . . f
» . , . -1 -

* ! —T N e ————T R e —— e
N . . R & 6,

L ERROR OUT-OF-RANGE 'FUEL USED
.- TIME TIME , .+ TIME %
‘ , . . Figure 7. Score Divisions.

o
. o L N .
A ‘a . .
. . ¥ . M .
f
. . . .

< .+ .~ MO-03/Page 19

’ Q .. : ‘— "117 .

7%
] The rules of the game are as follows: .
If .the room temperature “is below, 65°F, then heat is

requlred untlloghe room reaches 70° F.

Room4h§at is drawn frgm the collector or the storage

bin, wh1chever 'is warmer.
The back -up heater is required if the air entering
the .house would bQ} below 80°F w1th‘6ut the heater.

"The collector should warm the storage bin if the

collecth 1s warmer than',the bin and the house is
not belnggheated ‘ ' ¢

The fan should be off.If ne1ther the house ndr the ' .
building is belngoyarmed

’

Run the automatic game.

-

- By alterlng'the contents of address 0003, the com-
_puter can be told to cogtrol, the system, ZPlace 01 into
0003, and réstirt the: ‘program at—GBGG Now the same -sys-
tem 1sslmulatea,kbut the computer controls it. When ‘this
is done, it deplays its score Record thls in Data. Table 1 -
(Controller) and°compare 1t to the other score (from game

s

W1th manual control).

In most cases, manual control results in less com-

fortable control (as 1nd1cated by#the out- oﬁ range time)

and more fuel use-. Is this.the case? >

»

y §

LABORATORY. 2. DATA LOGGING.
<0 \

Construct the 1nterface.' T, ‘

The sensor analog constlonlng, and A[D c1rcu1ts
needed for temperature data logging are shown .in Flgure
8: Consult the instructor for the preferred way of .,
assembllng these,C1rcurts and attaching them to the KIM.

A

& Oscilloscope.

e e e

——— e e e ey ey ey S

s o |
. ' ‘Fiéure 8. Complete Schematic'.
' - Loy . . ’ '
2. Load.the prbgram. <, . '

The data- logger p/ogram is stored on tape. Read it
into the KIM and start execution at 0000. _The dlsplay
should.- 1mmed1a1:e1y dlsplay a temperature Wthh ‘can be
xead by assuming a decimal. ‘point \after the third digit,

- as shown in Figure 9. Either Fahrenheit or Celsius units
can be used'by pressing F or C, respectively;ythi’s is
displayed in the-last digit. Figure 9 shov.;s a temperature

- - . -

of 81.9°F. < O C
* .

- »

T T) R (© MO-03/Page 21

-1y T

‘s
»

Fletasatay vapee

3.

L
CC
1
L]
T

f , } §

_ DECIMAL POINT EITHER F OR C

[~ '

’

Vi
Figure 9. Temperature Display.
i

_Log in data.

e o

s

The microcomputéfj;;;;;;ds to the following keys:
., Press F to start logging data.)
Press 1 to see the data displaxed on’fﬁz ,)
oscilloscope as it is being logged. .
Press 0 to see the results previously loééed. -

Start logging data, then briefly immerse the sensor
in water. ' Then

et the water evaporate and then warm
the sensor with bo\ly heat (use fingers). Describe the -

compare the two graphs, ' How and why do ‘they)differ? .
ita Table 2 (Data Logging).

-

4 o ’) ’ oS

- DATA TABLES

DATA TABLE 1: CONTROLLER. s
Step 4. ' Your seore: _ .
- Error time C T
Out-of-range time ' 1//*'
’ Time fuel used, ‘
-] ’ ¢
~ Step 5. Compufer's score: . Te
' " Error.time ‘- ‘
Out-é% time ’
. Time fuel used
. q
~
.' ') DATA TABLE 2: DATA LOGGING.
Step 4. Describe the grdph:. ‘ :] ”“
. ¢ o ’ ~
. " Describe differences betwéén two Tuns:
o~ \ . - -
a = L 1]
.) \ :
‘. « N “] 3
. ;“ - ~Y -
i _ 121 ' MQ-03/Page 23 -
T . :.) ‘

2

FERENCES | : ¢
e ,

~ 0 > : -
P

Bibbero, Rdﬁéffij;jzﬂitroprocessors in’ Instruments and Cdntrol.
New York: John Wiley and SonS, Inc., 1977.

&I
s ! > Coe
Burton and Dexter. '"Analog Devices,"' Microprocessor Systems .

Hapdbook, Norwgpod, MA: 1977,

Foster, Caxton. .Microcomputer Programming: The 65022 Reading,

- MA: Addison-Wesley Publgshing Company.
KIM-1 User's Manual. Norristown, PA: MOS Technology, 1977.
McGlynn, Daniel R.. Microprocessors: Technology, Architecture,

and Applic;tipnsf New York: John Wiley and Sons, Inc.,:
1976. - ‘ . R

Rao, Guthikonda: Micfoprécessors and Microcomputer Systems.
New York: Van Nostrand Reinhold Co any, 1978.

Sippel,: Charles J. Microcomputer Handbook. Ngw York:
Petrocelli/Charter, 1977. .- ;

Sovcek, Branko. Micrqpro%essoré and Microcomputers._ New
York: John Wiley'and Sons, Inc=,\197%.

Tinker, Robert F. Microcqmputers."Cambridge, MA: TERC, 1978,

+

.
; , 8 .
. -
.
.

.) h 3

» ~ . L)

¥

,w\
&
A

Y
.

X

S

¥

3
B S
IR,

w;.
AL

P

S

b

NS
Nt Tk
v

Tty

N,
N

y

'»

S Esun
SRR X

i

INTRODUCTION

A disk-based microcdmputer system is simply a system
that utilizes a disk for storage. A '"disk" is a medium for
- storage that lends itself to rapid retrieval of large dmounts

datav—The addition of a disk to a microcomputer system —
greatly increases its flexibility and power} Much of this
increased versatility resides in a series of programs known _
as thé ""operating systeq." This module examines a typical '
and widely-used operating system, known as "CP/M," -which
K .

. will be used to create, edit, store and e7€éute programs.
& Computers that the enefgy technician will/encounter in the
< field wfll have an operating system that will be able, to
perform similar functions.
‘ " This module is an introduction to the programs in the
operating system but does not entail a complete descriptioq

of all functiohs.
. ‘;_q‘.'! /_
2

- F\\FTRE'RE&!ISWES

\-\ .
The student should have completed Modules MO-01 through
MO-03 of Microcomputer Operations.’ - A \

(¥

/ L -OBJECTIVES -
AN \ T

Upon completion of'this‘module; the student should be

able.to: . ", »
1. Use the operating system of a disk-based microcomputer _

to create, move, edit, rename, display, print, and erase
_‘ files. .. . (

. ’

, , MO-04/Page 1
.) . J | \ .
J;BJK; | d | . 124 , A

°

that are both interprete¢d and compiled. s

3. Create a personal disk/containing a full set of utilities

N

for latér use. // -
4. Define, the following terms: o .
.Disk. /

——— e S

Mini floppy disk.

Floppy disk. .

Hard disk. <
Operating system.s '

a.
b.
c.
" d.
c.
f. Prompt. ;
g. System prompt. .
h. Crash. .
i. Booting.
’ j. , Cold start.
k: Warm start.,
‘1. File.
m. File name.
n. Filetype. . ‘ L
0. COM file.
) pP. .Editor.
q. Editor prompt.
T. Logged in. (’ .
. s. Character pointer.
t. 'Coppiler. Y ‘
u. Compile. ’
V.

Interpret.’
5. Describe“the function of the following programs:

a. ED
b.- DIR
c. TYPE g
d. PIP .
T ——---Tg = ’SYSGEI;I\
Page 2/M0-04 . ~ ‘

125

Y

REN

—ERA
ASM
LOAD
BASIC-E
'BASIC/S

MO-04/Page 3

SUBJECT MATTER

- —it—easy to-— the~£e&%ew&ngﬁth1ng57‘_f-7A~47

- ’

DISK SYSTEMS ;//4

Disks add a new d1men51on to microcomputer systems. The
two attributes that make dlsksso powerful are their large stor-
age capability and relatively fast access. The ‘smallest disks
are called mini floppy d;§ﬁg and can store«80,000 bytes of
Qata. The disk system in this module uses 50vca1}ed full size

floppy disks, each of which can store approximately 650,000

bytes of data. Larger, so-called hard disks can store 20, 40,
or more million bytes of data. Any of these disks have the
ability to write or -read into memory within a few hundred '
milliseconds from anpy place on the disk.

A disk can be thought of as a record-player-shaped tape
ecorder. The disk itself is a flat, 'circular substrate that
as on its surface a magneti material Quite similar to that
used in tape recorders. _ _ . . b
. Floppy disks are very fragile, are made from flexible
plasti¢, and "float"\on\a cushion of air inside a protective
paper container. On the\gzher hand, hard disks are made of
rigi{l metal; they are constructed with very tight tolerances

so that more informatio ceh be placed on their surfaces
" than the same arsa of floppy disks. . -

FILE MANIPULATION

An operating system permits a user to operate or use a

computer. \This means that the operating system should make

+ Write, debug, print, and retrieve locally- generated

% .
- MO-04/Page S

127

programs:
-+ Load and run p
.+ Load and use o
programs writt

. Enter, store,
By this defini
as an operating sys
tem can be supporte

2

rograms.
or more high lev
n in those languag

=
-3

n
e
nd retrieve data.
ion, the ROM monit
em. \However, a my
when a disk 1s pa

a
t

[

2S .

1 languages and store

br im the KIM qualifies
ch larger operating sys-
rt of that system; this

makes it correspondingly easier to_us¢ the computer. .
2@e operating system fs the first program encountered
operatihg system must be

when a computer is

told®what program t

urned on, and th
‘retrieve and ex

ute.

information by’disp aying the following:

This is computer s
want to eiecute?"
right-hand one.)

the user that' some
" The

of

can be done.
with the name
(RETURN).

< When the
automatically
called booting th
is fan abbreviatio
o operating’

is reset'by somedqne pressing the rgset button.
Thege are times when $ome program is running out of *

warm start.

computer is turned on

A> .

It asks for this

orthand for "which program on disk A do‘you
(Disk A is usuallly, but not always, the ‘
he A> is called g prompt because it tells

response is required bgforé anything further

N\

'system from a cold

of "picking itse

system is also 1

loaded into the computer from the disk.

start.
1f up by its boot straps."
oaded in any time the computer

olputer then halts until the user, responds
program and 'strikes the carriage return key

, the operating system 1is

This' is
The term "booting"

This is called a

control or has inadvertently altergd the operating system program

in RAM. This is|[called a system c

T |
‘rected by pressing

"Page 6/MO-04

M

ash and usually can be cor-

RESET..

128

|

FILES

' A new addressing scheme is required with disks because
of their enormous @ata storage capacity. The randqgﬂgccess
approach used in the main memory of a computer is neither
appropriate nor necessary on a disk. It is inappropriate . .
because the address woﬁld have to be long and the access time
.would be lengthy. Iﬁ is unnecessaty because information can
be s'tored on a disk in large blocks which -can be loaded into
RAM 411 at once. This alleviates the problé% of accessing
each 51ngle byte directly.

For these reasons, information is stored ‘on a.dlsk in

' blocks called files, which can contain varying amounts —

from zero bytes to the entire disk (650 kilobytes). Every ézle
has a name that is used instead of an address to gain access
to thé information within the file. The name of a filemust

»

%Bave the following form: »

The filerame can have up to 8 characters with no spaces. The © ‘
following 'are examples of valid file names: A, MYPROG, and
M174$. The name must be followed by a period and a 3-character
type. The "type" is useful for telling the operator what type
of,file it is and.for distinguishing related files that have

the same name but a different form. With one exception;, the

filename.filetype

6perating system normally does not care what the filetype is.
. \
The one exception is COM files of the form:

1 o

_ o f@lename COM .
CTOM files will be discussed latear 'in the sectio;\;;>program

execution. The following are-valid filenames: MYPROG.AAA,

‘

129 §

\ MO-04/Page 7

ED.COM, A.BSC and A3.

/q

CREATING AND STORING

$$$

FILES

file is and how it is created. Supp

An example is useful at this Epint to iliustrate what 'a

file called EX.ASC that Yontained tHe following phrase:

~ "\Th

The operating sy
which is used to crea
‘by the operator typin

| to be edited (EX.ASC
“| tion is as follows:

[.

3

4
Here, <return> means

used interchangeably

operating system to T
and to tell the edigo
Then the editor searc
Finding none, the dis
srectory of names of £
The editor informs th

stem contains
te or modify f

g its name (E
is this examp

iles.

is is an example Of a file"

ED EX.ASC <regurn>

"strike the_RETURN key.*—(Ret and CR érq

to represent
ead the -editol
r that the f

its grompt,_*.
At this point,'t
is nothing in it. 1In

| bytes. To add to thi

,Aserilﬂié_rypedl _Afiéx,;his, any

the file. In particy
|

Page 8/MO-04

he.file EX,
othér wordsg

s file, thejcommand "I <return>" -(for in- .
thing typed will be added to

lar, the AS[II

thls .)

Return causes the

ited.

; ‘fnto'memqry from the'disk
fle EX.ASC will be :é&\

SC exists in name only; there
, it is a file "containing zero

code of each key.pressed

\]

ose- the operator wanted a

2y program called an editor,
The editor is started
) and the name of the file

e).

The complete instruc-

w?

T

o

[]

o

.4

-

3 Type: 1 <1_eu"m)"_________._——-—---"‘_’

will be added to the EX.ASC file. \
* Now the follow1ng message can ‘be typed: "This'is an
example of a file". After the last e, ED-must be stopped
from insqrtiﬁg anything more. This is done by typing the
speciai character CTL-Z, which is an abbreviation for '"Con-
TroL-2." CTL-Z is generated from the keyboaf& by pressiﬁgM'
both the.CONTROL and Z keys together. 'To‘emphasize that =
CTL- Z is one character,. the symbol <CTL-2> will be used
hereafter : ’)
The computer néw responds w1th *, this indicates that?®

the editor is again ready for further instructions. TIf the

¢

s

message is assumed “to be correct, it should be saved and the ..

editing session should be ended. -This is done by. the opera-
tor typlng e (for end). L

~

Flgure 1 shows all thé instructions.required to f11e the
following message: "This is an example of a file.

-

USER _ACTION K DISPLAY SEEN
Turn on computer-- :

_.___,_—-?b B) 'S
Type: ED EX. ASC return

* . §D EX.ASC

— A>

ED EX.ASC
> -

Type: This is an example of a £ile /

yp P = .
‘ED EX.ASC
»

— This is an example of a file

Type: <CTL-Zp ==

i A> N
' ED EX.ASC
T . ..
' This is an example of a file
Type e <return> W= . ”»
—— A
i ’ ‘. E% EX.ASC
. W
" S) This is an example of a file
; e
o> @ :

2

. - . ’

. Figure 1. Steps Required to Create a Fie Called EX.ASC

)) " MO-04/Page 9

131 B s

+

(\

g B S :
) . . -.i - ¥, *
The.editor can be used to modify existing files. This

- capacity Wwill 'be examined in'a later section of the module.

’ © o v - ' w - ‘
. * A .

cL 'MISTAKEﬁ e
' 1 - .
When an error is ﬁade 1n entering 1nformatlon <:he operator)
has' two optlons: (D the current 11ne can be aborted .or (%)
the last one-or more characterscan be deleted. Thé current line
is aborted by txping <CTL-U>*(the control and U keys together)
and- the last character is removed'hy préssing the DELETEtkef}‘ .
The system responds by. repeating -the deleted ‘letter. '(Kny number
of 1etters cail be deleted this way.) - \ | S
For an example of the use of the, delete optlon, suppose .
"THIR" was typed instead of "THIS." After pre551ng DELETE and S
the operator enters the correot‘message_and the display shows "THIRRS."

’
Py .

" . . : \

’EILE CONTROL ° L : -

At this point it is only assumed that the fille. EX.ASC
//’exists'and contains the integpded message._ However, the operat-
ing system should have' the ability to permit the user to verify
both the name and contents of any file. o
File names can be éxamined with the program "DIR" (for _;hec- -
tory). The file contents-can be ‘displayed by using the program
"TYPE." - . o e B
'To use DIﬁ type DIR in response to the system prompt A>}
thls is the usual way to fun a program with the operating sys--
.tem - simply type its name. DIR responds by dlsplaylng the
names of all f11es on the disk. ’
In the present example, the 1dea is’ to Verlfy whether a file
is on- the disk. This can be done after a system prompt by

<o
s

»

" page 10/M0-04

132

R
2

the operator typlng DIR and the file name by - "as follows:

¢ - 4

f‘*

D

» -,

DIR EX.ASC <return> \

J ‘ \ s

" ..The full name is required. DIR will report whether that‘file

o

' is present, on the ‘disk. One can also request any. filke -called

r

R ' EX by substitutin® a star for the-type as follows:. - - [;\

3

DIR EX.* <return>

2

All ASC filetypes can be requested with the‘following:

am

~ .o . -

(o DIR #.ASC <returnm>

To display the.contents of .a‘ file, type TYPE" then type
the full name of the file: For example, to_see the <ton- , -
'tents of[ﬁX.ASC aften a system prompt, type the following:

. .
. . " »

TYPE EX.ASC <return> <™ .-

The computer will-respond with the message“preV1ously entered S
.L"lnto this file. S S
At Sometimes the contents of a file are too extensive to fit
/ on the screen; or the contents are displayed s0 qulekly that they

are scarcely seen before they are erased again. To stop the .
display, type <CTL-S> (the control and S keys together). This’
usﬁally freezes whatever the-computer is doing. "To continue
(or unfreeze the compiiter) any key can ee struck by ‘the operator.
Sometimes the operator must stop a program and reboot the
operating system.. This could-happen when TYPE,is displaying'
a long file and there is no need to wait until’ it is finished.
The Eommand <CTL-C> will usualiy étop'any program and feturf).,,'~

N . MO-04/Page, 11

133

-

‘to the system.

= COPYING FILES
T The operating system cén copy .files from one disk to_another. k\)
This' will be done in, the 1aboratory to create a personal disk. ’
* from a master disk. . '
S— — The two disks have the naQes "A" ‘and "B". " If more disks
— are in the system they have the names "C, noup n wE " etc, Only one
7 disk can be logged in at a time,. The significance of the logged-
in disk is :that only one normally will be searched for matchingh
— _ file names. For instance, if dlSk B contains the file X.ASM,
then, ywhile the A disk is logged 1n, a search for that- file w1th
the command DIR X.ASM will report: f1nd1ng no file with that name.
To change the disk that is logged in, type the new disk -
name, followed b&,a colon.” To change to disk B, typé as follows:
' . . . B: . ’

~
.

o\this, the system resfonds with-B>. The currently logged-.

in disk is always shown as part of the system prompt.
o . Files can be cop1ed from one disk to another by the. opera-

'tor using the "PIP" program. To copy a file EX.ASM from disk

A to disk B, the command is as follows:)
’f_ L . 3 . - . . ~ cE .
. . B . - - <. .') ; .

‘ Py B: = A:EX.ASH - ,

-

)

.
.

- o 2 - . N

. v

* “ . -

Thi%“uanzég en}ered in f%sponse to a system prompt.
ASM filetypes can be copied.with the .following:

- " PIP B: = A:*.ASM

4 . N ' . «

— . Thégzqual-sién above can be thought of as a left a%isw. PIP
moves whatever is on the right of the symbol to the left.

Page 12/M0-04 ; IR

134 .

.
3 - PN

-«

The*openating system can copy almost anything between
disks by uslng PIP. The only. exteption is the operating sys-’
tem 1tse1f A special program called "SYSGEN" is used for
this. When the program name SYSGEN is typed the program asks
which disk the system resides on -~ the source. It copies thls
information irto memgry and asks onto wh1ch d1sk this is to be
ead.” A blank disk can be inserted to replace the source; or
it can Be put en the other disk. SYSGEN then copies the sys- .
. tem onto. the other destination disk. A°carriage return gets)

" the system back. ’ ’ -

e RENAME AND ERASE o
S , - ,
; It is-sometimes necéssary to chagge‘the name of a file;
-;' hlS done with the program "REN" (for rename) To change
" the name of file EX.ASC to MES.ABG, the REN command can be
used in the following form" . o .

-~ 7 . ~
a0

REN MES.ABC = EX.ASC <return>

.
- st

f s
¢ The'new,name comes first and is followed by the old name.
(Again, think of the equal sign as a left arrow and it should

o help to remember.) - ’ . R

PSR
« ®

> When a ‘file.is no longer needed, ‘it can he erased with
the ERA command To erase the example program type the

,' follOW1ng . ~
- ., ERA EX.ASC <return>,
. " ED, REN, ERA, DIR, PIP, SYSGEN, and TYPE are all commands
. o built into the. operating system. Each is a program that can

be executed by its name being typed after the system prompts d
the user. Together “they provide full control of files; they
- can be used to create, store, retrleve, modlfy, copy, and Te-"’
,° move f11es The ED program has many addltlonal features that
) Y
. 7 - J M0.04/Pa§e 13

- - : - T x &

¥
£ -
)
Pl . € \. N e ~ \
. N i

make ‘it easy to correct and modify files. Some of these fea-

tures are described in the nexf;sectioq.
-3

i .
|
]

|

D D . EXAMPLE A: FILE CONTROL.
Given: The CP/M editor. . .)
Find: The steps needed to create a f11e called MES. MES
J\. type it from the disk, change fts .name to MES.AGE,
¥ then erase it.., The file should contain the message
o "The quick brown fox jumped over the lazy dog "
Solution: ED MES. MES <ret> . '
I <ret> ' N
The quick brown fox jumped over the lazy dog. <ret> |
oL ‘e <ret> , 2
<CTL-Z> . ‘ :V) ‘ /.
) TYPE MES.MES <ret> . ‘ oo
- ' REN MES.AGE = MES.MES <ret> .
B ERA MES.AGE , ° . ‘
e . - , ’ : £ \
~—" ') . }
~) ’ . . . ’
: ~ . . . THE EDITOR . o

)

Flres can contaln any’ 1nformat10n and Qgghi also conta1n
text, as did the example above. A file may also contgin data,
' machlne language programs’, or any other 1nformat£on used by : ‘ °
- . the_‘tomputer. s : SN >{ ; . ,

The usual waj.to, devel P machlne code with a computer is . .o
' . " to enter the program in as mbly code, then use an_asgembler :
o *to create machine code from the assembly code. In a disk-based -~

syeEEh,\%he assembly code is conta1ned 1n a f11e, as. are the

+

-

“ . . .

2

o Y ~ N
. . . ~ ‘
. : i s v

B

assembly program and the resultlng ma€h1ng language. The files

o« N)) : S

{

- ! -~ o

i

that contain different vérsions of the same program usually are
given the same filename with different types. In the‘example VS
below, a program chlled DIAG will be written. The assembly ////
version will be called "DIAG ASM"; while the assembly machine
code version W111 be called "DIAG.COM'".)
To 111ustrate the use of the.éﬁﬁ%br, the INTEL 8080 assembly
program in Table 1 will be entered 1nto DIAG.ASM. This short - ..
program draws diagonal on the TV, startlng from the -
sectlon of the screen. ‘)
ThlS program can be entered by using the edito? ED in the
insert mode The only new feature is the coludn format which’
_can be achiéved with tabs. CP/M recognizes <CTL-I> as a tab

that advances it to the beg1nn1ng of the next column. A-zero

and the letter "O" are sometimes difficult to distinguish. ' N
Vote that in Table 1, the usual convention of slashing zeros

is used The codes in the assembly program are written for

8080 type microprocessors and are different from the codes 0,
used in previous modules. At thls'b01nt, it is not important

to understand how the code draws the diagonal. This example

is used to 111ustrate how to create, assemble, and run machine-

code programs. . . Sl

a

® | o
MO-04//Page 15 .

. 137 7 . ..

* TABLE 1. AN 8080 ASSEMBLY PROGRAM - DIAG.
ORG 1ppH
START " MVI A,PC6H; Set’ byte, write direction.
ouT 19H
' MVI AP ; Set.cursor at zero. *,.
N ouT C ‘
- -~ OUT 1CH. _ %!
OUT 1DH 6:53}
' OUT IEH '
MVI B,64 ; Set gounter. -
o MVI A,33H ; Set byte command. '
‘EBOR ouT 1AH ; Draw a dashed line.
DCR B ; Decrease counter.
" JNZ LOOP ; Repeat if not zifo.
JMP) ; Return to system.
CORRECT£§9 A FILE .

If Table 1 had bgen entered, but contained erroré, ED could
also be used to correct the errors.

To correct at some locati6n within- a fiie, the operator
must be able to specify locations within the file. This is
done with an invisible pointer called the character pointér,

or CP. ‘Once_the character pointfr is properly positioned, it
can be used as a reference point"for removing and inserting
‘charagters oﬁ!ﬁhole lines. Thus, the first.step in an editing
session is to move the CP to the desired place. , ’

The editing of DIAG.ASM is started By typing the following
in response to the system prompt A>"

ED DIAG.ASM <ret>

3

. page 16/M0-04 - 138 ‘

The editor responds with its prompt *. At this point, the file
has not beén read into memory. Before the file can be changed,
it must be read into memory from the disk, which is done with
the editor command.

, #A <ret>
There is an error in the fifth line in Table 1; the line
should read as follows: ‘

OUT 1BH

» 3

This means that the C must be removed and 1BH inserted. To
do this, the CP must be located just before the C in line 5.
Its current location is.at the end of the file., The command,

°

—Beret>- S
moves the CP to the beginning of the file. Then the command

SL <ret>

]

moves the CP down five ;ines.
To check this, the line can be typed with the following
command : ' . ‘

> T <ret>

The editor will respond with the following line:

o

<tab> OUT C

\

At this point, the line can be removed with the "kill"

hY
[}

- MO-04/Page 17,

K

command:

K <ret>

- >

and the new line insérted\with the fol;owing:

I':>é}>f .. T ' ’
<tab> OUT <tab> 1BH <ret>
<CTL-2>

” N N 3

Another approach would be to move the CP 15 spaces to the
right with the command below:

-

15C <ret>"

-

5

This movegplaces\it(just before the C in the line. The C
can be removed with the. delete command: _

3

K - D <ret> i /)\

Then, the correct text can be inserted with the insert command:

Q 1

I <ret>
" 1BH <ret> ’ .
<CTL-Z> ’

- Now that the corfections'have been made, the new, corrected
file should be saved on disk. This can be done by typing the
following: . ' , -

E <ret>

The edit session ends with this, and control is returned to

L]
4

\ P
Page 1§/MO-04 o

v

Y

e

the operating system. Tﬁe corrected file i's called "DIAG.ASM".

A backup file called-"DIAG.BAK", is created by ED; it contains
the old version of DIAG.ASM. Thus, if the corrections were

wrong, the old version could be retrieved and renamed DIAG.ASM.

This example introduces the major commands -in ED. A more
complete list of commands is given‘in'Téble 2. A number (sym-
bolized by :n) can proceed most of .the commands to cause thém
to repeat. If tﬂe number is missing, +1 is assumed. Thus, T

_types one line, while 20T types 20 lines._The pounds sign (#)

“can be used in place of a number to mean "all"; therefore, #T
types all lines (after the current CP position).
The operator manual for ED should be consulted for a com-
plete description of all the commands in ED.

3

e

o

'MO—O4/fage 19

141

wit

P

X~

TABLE 2. ED COMMANDS. :

nA<cr>

+B<cr>

+nC<cy>

t:n%<c">

.t

_E<crj

snK<cr>

;/‘

L
snl<cr>’

temporary file.

Append the next n +nprocessed source lines

from the source fi at SP to the end of the
memory at MP. Inchement SP and MP by n. '

Move CP to beginning of memory if +, and to
bottom if -.

iy

Move CP by =n charjcters (toward front of memory

if +), counting th¢ <cr><1f> as gtwo distinct
characters.
elete n characterfy ahead of CP if plus, and
ehind CP if minus, .

End the edit., Gopy all buffered text to temporary
file, and copy alll unprocessed source lines to the

Kill (ie remove) 4n lines of source‘text, using CP
as the current reference. If CP is not at the
beginning of the gurrent line “hen K is issued;
then the charactetrs before CP tfemain if + is spec-
ified; while the thaTacters after CP remain if -
is given in the cpmmnad.

[

1)

If n=0, then movel CP to the beginning of the
current line (if jit is not already* there); if

g

Q

ERIC

B
; &

14

X

.

Q<cr>

snT<cr>

.

t tn<cr>

. of the line whic}

_ If n=0, then t

nf0, then first move the CP €6 thé beginning of

the curfent 1ine, and then move it to the heginning
is ' n lines down (if +), or up

(if -). The CP yill stop at—the top or bottom

of the memory ifjtoo large a:jglue of n is

specified. . /
. [

Quit edit with np file alterations. Return to CP/M.

the contents of the current line
up to CP; if n=1, then type the contents of the
current line frdm CP to the end of the line. If
n>1, then type fhe current line along with n-1 lines
which follow — §f + is specified. Similarly, if
n>1, and - is glven, type the previous n lines, up
to CP. The brepk key can be depressed to ahort

long ‘type-outs.f N
Equivalent to nLT, which moves up or down and
types a single {line. . .

(33

ra

.
é.

EXAMPLE B: EDITING. ’

Given: The file ER.ASC, which contains the folloﬁing:
ENERGY CONSERVAT&QN IS THE MORAL
EGIVALENT OF WAR.

The' commands required to correct the spelling

error and save the corrected text.
‘Evoke the editor from the operating system:
ED ER ASC <ret>
.Brlng the file into memory:
#A <ret>

Position CP at\th beg;nnlng

Find:

Id
Solution:

B <ret>

A

< Move to the start of thé next line:
L <ret> \

-

-

_~mMovewfoxward—JNGhafactergﬁ . ——— e

7C <ret> \
Check that G is the next b§ typing the line from
the CP:

T <ret>
Delete .G:

Dicres - Y, '\

Insert-the missing QU: - \

I <ret>
QU <CTL-2Z> ” -,
Save the correctlons gnd leave ED
. E <ret> N . Y) S)

M0O-04/Page 21

; PROGRAM{ ASSEMBLY

To execute a program writiten in assembly language, th
operator must convert it firstj to machine code. This is done
with the assembler called "ASM'-and the loader called "LOAD";
-An example based on the DIAG.ASM program is sufficient tq'iﬂg\
lustrate their use. ,

Assembly is initiated by typing ASM, then typing the name
'of the file. The filetype sh#uld not be supplied, since the - .
assembler requires that the type be ASM. To assemble DIAG,
type the following response tp a system prompt: -

A

1 R “

‘ ASM DIAG

The editor will then take over. If there are ng errors, the
machine code result will be gtored on a disk as a file under’
the name DIAG.HEX. When ass%mbly is complete, the assembler
returns control to the operating system. ' o
' It is difficult to view|the results of the assembly.

Typing DIAG.HEX would ng} make sense because the TYPE command ,'
réquires ASCI1 code, and DIAG.HEX is irhexadecimal code.

To simplify viewing thel res#lts of assembly, ASM generates
a printable, file called DIAG]. PRN; whén displayed, using TYPE,
this shows both the assemblyj code and the assembled machine
code. ! .)

If errd?s are encomqte éﬁ in assembly, error messages

will be displayed and the oy files may not be generated;

1

PROGRAM EXECUTION

PO Sy :

L]

Any program in machine fode should have a filetype with
the name COM. The assemblyjof DIAG created a-HEX filetype. -

.- <

: Page 22/MO-04 : ' b —

< .

[

. this depends‘on the type of ferror.N_ - - o

The system has é:progrgm called LOAD phét creates a COM
file from a HEX file. The command is as follows:

LOAD 'DIAG

This will generate a file talled DIAG.COM that can be Tun.
When a so-called COM file is on a disk, it can be run, or

executed, by simply prl g its name.without a.filetype. So, t

execute DIAG, which draws\a diagonal, type.the following:

o

DIAG
The computer executes the program, and then returns to the
operating system.
The complete comfnands neededto assemble #nd run DIAG ar
listed below. [This example assumes a correct 'assembly file

T 7 exXists with darfilenamée DIAG.ASM. “The u§ér"pres‘§he following:

~ ASM DIAG <ret> I
LOAD DIAG <ret> _
DIAG =~ <ret> s

This’ program creates the flles DIAG. PRN, DIAG.HEX, and DIAG.(COM.
To run the program agaln, only DIAG needs to be typed, since
. DIAG.COM exists. The ASM, PRN and HEX versions of DIAG coul

f be erased with ERA without affecting the subsequent-execution .
N of DIAG. .

2

¢

]

o o : . MO-04/Page 23

145

E

N .

[8
-
[
o

. ‘ : |
. BASIC ° i
BASIC is a language thagnmakes programming easier by
having the computer do much of the tedious parts of programming.
For instance, the effect of DIAG can ba‘acgomplished with the&
BASIC program that follows:)

[

. 10 PEN UP
- e /20 JuMP TO -64,81
. 30 PEN DOWN. 5

- _ 40 JUMP TO 38,51

The meaning of the instructions will be studied in future
modules. The purpoée of this example is to introduce a
program that is shorter and more like RPgllsh than the

= assembly ver51on . Q§\§ .

‘There are two types of BASIC: comp11ed and interpreted.
4When BASIC 1s compiled, programs like the one above that use’
‘BASIC commands are converted to machine codé in much the same

T w%y an assembler converts assembly code. The process of con-

) vertlng a high %evel language like BASIC to machine code is
-called- compllatlon .The pr ram that accomplishes the com-
pilation 1s called a complier.” A compiler is a program that
acceptq a f11e eﬁﬁposed of BASIC commands and generates a file
that can be ioadel; nd run. A BASIC compller, called BASIC-E, =
ki1l bJ used in fthe. laboratory

ted BASIC is ea51er to use because there is \N\

g e&. To run an 1nterpreted BASIC program,

“

e, no compila
the file BASIC/S executed by typing BASIC/S5 in response
to the system pgyézz, “then, ograms can be run, entered,
saved,|edited, and reaoved*under control of that progranm.
The following twe modules will detail how this is done.

)

Page 24/M0-04
.

.
« .
~
‘ .
.

LY

. - -

One of the commands within BASIC/5 is RUN. When this

“command is typed, eath line of BASIC code is examined by the

°

BASIC/S5 program and converted to @/;h&ne’lnstructlons as the

program is executed Thlg/process is called interpretation. .
In a sense, when an interpreted BASIC is run, compilation and
execution are combined. oL

Interpretation can. be a. very 1neff1c1ent form of compila-
tion. If the program contains a loep/’hat results in one BASIC
instruction being executed many times, an interpreted BASIC will

" reinterpret the same line every time through the loop. As a

-

result, interpreted BASIC is slow. v

The advantage of interpreted BASIC is tha&‘piograms are
easy to modify., To add a line of BASIC code; the line is simply
typed in and the program RUN‘ again. Contrast this to the more
cumbersome process in a compiled BASIC: The original file must
be-changed~with—£ﬁ:—fhen the source file must be compiled again
with BASIC-E; and then the program can be loaded and fﬁn*J

147 MO-04/Page 25

; N
: - ROy EXERCISES
: — -
1. State the commands that would be reduired'to'generate a
- file that-could be typed out to give the following:
‘ ‘ PARIS
IN THE
T : THE SPRING
2. Suppose’ the file in ﬁkéizgse 1 re;ides on disk. Give all
the commands required to edit that file so fhat, when
typed, it would give the following correction: '
PARIS IN THE SPRING!
3. Describe the:steps required to enter and execute a file
that contained the following BASIC program: \
10 FORYI=1 to 10 .
» 20 PRINT 2%I+1 .
30 NEXT I o .
) 40 END .)
4, What aré the differences among PRN files, HEX files, and
—_— ., ASM files? . -
5. -What are the relative advantages of compiled and inter- *
preted BASIC? . .
6. Describé the steps required to enger: correct assembie,
list, and execute a program written in assembly language. 8
. : 7. ~'Describe how one would enter and execute a listing of a ‘
K/”“ H program in machine cod?:
// . ‘ !
- LABORATORY MATERIALS
- . ° - i' v
Access to a disk-based microcomputer with CP/M, BASIC/5, and '
BASIC-E. - - . _ . -
. - j . ; K Y
i Mo-04/Page 27 8

§ - | -

Q ‘ 7
1 floppy diskK 8 1/4",

_LABORATORY PROCEDURES

-

‘ LABORATORY 1: FILE MANIPULATION,

0 —a_
Ckeate a;personal disk. C
A master disk will be available for each student to
use to copy onto a disk that he or she will be 1oane% fO{
Athe duration of this course. Copy the-operating system
onto the disk, using SYSGEN. Then use PIP to copy the
editor (ED.COM), ‘assembler:(ASM.COM), loader (LOAD.COM),
interactive BASIC (BASIC.COM), and compilation instruc--
tions'(COMP TYPE). Place the disk in drive A and reset
the computer. by pressing the reset button. If 'the disk
has the operatlng system cop1ed correctly, the computer
should respond w1th a system prompt. Use DIR to confirm
that eQerythlng 15 on_the disk.
Create DIAG. - . -)
Enter the program DIAG exactly as shown in Table 1.
Save }txand leave the editor. Type out the file, and
call up £D again to correct line 5 and any other errors
that mayihave been made. Save the torrected file; and
do not erasq the backup version.
" Execute DIAG." ° - - J
’ Assemble, load, and execute DIAG. Record the image:
seen on the TV screen 1n Data Table *1 (Files). U;E DIRK
to list the complete names of all files with fllename
DIAG and any type name. -Record these file names, type
out ‘and note their cogtents, and describe when each was

S

28/M0-04.

1.

v

’ Correct‘errors by retyping. the incorrect line.

.

created.@é‘Data Table 1 (Files).

- LABORATORY 2: EXECUTING BASIC. :<zj) \

e

Run an 1nterpreted BASIC program. o . ¢

The program in Table 3 1§ a nonsense program that.
performs ten thousand additions and multiplications by
requiring line 40 to be executed that many times.

-
-
’
..

>

TABLE 3. A BASIC PROGRAM.

) , 10 FOR I = 1.TO 100 .
20 S =1
L _ 30 _FORJ =1 TO 100
40 S = S+J*.001
; 50 NEXT J '
60 NEXT I - , ’ >’,»
70 PRINT "THE SUM Is", S| . ’

- —
N
L]

The logic and ﬁeaning of the program'is unimportant,

-
» . 4 ,

it 51mply will be used for practice and for comparlson)
of the‘two forms of BASIC.
Note the.tlme. Execute the 1nterpreted BASIC by
t&ping its name, BASIC/S///in response to its Questlons;
tell it to create a new progyam ‘named "COMPUTE " Theg .
enter the program glven in Table 3 ‘Check for errors by'

typing the follow1ng L. - -
LIST <ret> 1 - R

' When cOrrect, eéxecute the program by typlng RUN

program into the computer and runnlng, andl also hqg long
it takes to run. It is flnlshed runn1ng when 1t types

.
: .. .
B . s 6 -
3 -
Voo s : 150 . -
) ,

.
- .
’ - . .)
. (A .-
N . - - . - N > “
M < £r . L}
R — P - - - -
P - R . N - . x .

-

. the following:
| THE SUM IS-
' READY

¥

Record what it reports as the sum in Data Table 2
(BASIC). . '

- . * L= , —
Save the program'fy typing the command:
save * : -

v

Return the system by typing the command :
' ‘ SYSTEM
2. Modify interpreted BASIC.
Suppose that line 40 of the progrgm should s the
following:

o 40 S = S+I/J .
o do this, recall BASIC/S with the old program COMPUTE
by Xyping the last line:
. BASIC/S OLD ‘COMPUTE <ret>

Note the time. "Now type in.the corrected line, and check

' the listing of the program for errors and‘f%n it,

(How long did it take to correct the program? How long

did it taf@'to run it? What number did. the program Treport
as the sum? Record answers in Data Table 2 (BASIC)

3. PRun a compiled BASIC. e
TRe disk contalns detailed 1nstruct10ns for comp111ng
BASIC, Read the 1nst{9ct10ns by typing the file called .
"COMP.TYPE". Follow those directions to enter and run the
* program 1n Table 3. : . - -
‘“Agaln, note the time required to get the program to, the :

p01nt that it will run, record its executlon time, and - copy.
the -sum that the program computes in Data Table 2 {BASIC) .
4. Mbdlfy compiled BASIC. 5 \ e
« Make the correctlon to line 40 described in Step 2

ws

-~

A
/] co . N ‘e
: .

. o v
t - + -
v O v ' *
- ,

Page 30/M0-04 \

R
and run the program. This must be done usin&,ED to
modify the source file and then compiling, lggding,
and executing the program. 'Record the time required
to obtain a modified COM file, the execution time,

and the results of the computation in Data Table 2
(BASIC){

1

DATA TABLES

DATA TABLE 1: FILES.

STEP 3: Describe results of running DIAG

<

DIAG FILES

Extent " When Created

DATA TABLE 2: " BASIC.

"STEP' Time to Enter Time to Execute - Sum
-1
2 ’
3
- 4 — K i S—
7 o

Describe the relative merits of interpretation and compi-

lation:

REFERENCES

An Introduction to CP/M Features and Facilities. Digital;

Research Corp.)
ED: A Context Editor for the CP/M Disk System. -Digital

A

Research Corp. . ,
CP/M Assembler (ASM) User's Guide. Digital Research Corp.

. - .
A\ ‘ NN
. -

[y

e

ENERGY TECHNOLDGY

e CONSERVATION AND/ USE =

-

N

N

. r
. -
.
.
¢
.
“ *
-

<

MICROCOMF’UTER OPERATIONS

¥

! J‘ . , : . e k™ .
oy MODULE MO- 05.-

ENERGY AF’E:L[CAI!ONS OF MICROCOM UTERS y

‘ o -
f .uy;t - - -

f
"
|
;

. . -

———

—
.

L
B}
o

INTRODUCTION /

N .
<
.~ -
~a
¥ |
. R ’
‘
- ¢
IR . «“ .

" The versatility of a microcomputer ¢can be illustrated
|

by operatiné two application programs related to energy
conservation. The first i#s a solar energy feasibility study - ,
that uses field data to estimate the economic valie of /

- solar heating. Students apply this data-to local conditions.
The second program illustrates load shedding = a strategy

used by large consumers ‘of electricity to keep their peak |

demand under,control In this module, load shedding becomes |

- a game in which the student has the problem of trying to find

a shedding strategy that conserves the most energy with the

! minimum of inconvenience. Two versions are provided: In one, |

the student does the sheddlng, in the other, the student
programs the computer controlled shedding. The results are [
compared to demonstrate the computer's ability to make quick |

accurate decisions.

: : \ PREREQUISITES

%

L

The student should have completed Modules MO-Ollthrough

MO-04 of Microcomputer Operations.

m—‘%“
———

OBJECTIV S

f

Upon completion of this module, the student should be
able to: - \ .
1. Describe a solar energy heating feasibility study, the

data such a study requires, and’ the kinds of calculation}
this implies.

.

¢ MO-05/Page

’ | 155

2, Describe the significapce of load shedding, how it is

accomplished, what kind of data it requires, and what

: ~ calculations are requijred.” ' . ' . o
3. _ Estimate the hardware [and software requirements of a
computer .that could pe¢rform solar energy feasibility
—— studies. ° = ——— ‘ "
4 Execute programs that|/ perform a solar energy fea51b111ty)

Page 2/MO-05 K o : *

| o SUBJECT MATTER

- . _ ENERGY CONSERVATION PROGRAMS

This module provides two concrete examples of moderately
complex BASIC programs that can be run on a small microcom-

— _puter. To use and appieciate these programs, the student
needs a brief introduction to the ideas behind the programs,)

which is the primary objective of the following sections of

this module. The programs will be run in the laboratory

and then analyzed in Lerms of the compﬁter hardware and soft-

ware they require.

* The first program is SOLAR. Thisis a program that
determines.whether a particular solar installation can save ’
money in the long run. The,seéond program simulates load
shedding — a procedure used' by commercial electricity
consumers to conserve electricity and reduce costs.

SOLAR - . ' (/

-

Solar collecfor systems are gaining in pepularity as a ,
means to generate space heating and hot water. However, there
.aré still questions that afzéebconcerning the value of solar
heating. Opponents say it is too expensive; advocates claind .
that it saves fuel and money. It is a fact that certain solar
systéms.can be economical under certain circumstances; but,
the economic viﬁbiiity of a solar installation depends on ' s
its design and location, on present and future costs of fuel,
"and on interest and tax rates.-

SOLAR is a BASIC program that can perform the calcula-
tions necessary to determine the economics of particular'
solar installgtions. This program is a good example of the

0

MO-05/Page 3

ERIC . IS

- .

‘

| type 6f computations that small computer can perform; and it will
be ruﬁaas part of the labofatory work-to be done in this module.
SOLAR assumes the s&s em diagrhmmed in Figure 1 is used.
Thé collector heats air and stores it in a/ﬁhermal reservoir,
which normally can store gnough heat for a few days of\heating.,
~/ Heat is .then pumped from the yeservoirhtgﬁtthbuilding. If
necessary, a backﬂp heatef can be used to supplement the reser-

o

.voir or take the heat up fo an acceptable level.” ~— = a

3

-

COLLECT]

‘WATER SUPPLY

Figure .. $¢lar Heating System Used by SOLAR.
R

q »

The Collection System 2 /
The collector is fassumed to face south, and its slope is a
partiﬁularly crigical design parameter. For best year-round
' performance, .the slopg should equal-the latitude. Better
winter performance cap be obtained with a 10°-20° greater)
slope. 7~ | - '
‘ The collector'a ea is a critical cost factor. Collectors
that circulate 2 liqyid cost approximately $100 per square

a

w ' R ‘»- T ’ “
Page 4/MO-05 - -

Q ’ ,

LRIC, - /

-~
. . .

)

meter. Air collectors cost less — in the range of $30 pe:
square meter. For simplicity, SOLAR assumes that air coltf
lectors are used. Large collectors are needed to collect o
heat for extended storagq'because long-term storage is nepded
for sunless days. However, it is usually more economical to
have storage fgr dnly a few'days and then rely on backup heat-
ing — the alternative requires the use of prohibitively ljarge
__collectors and reservoirs.. -
Air systems use bins that are filled with stone for

reservoirs. A good rule of thumb is to use 0.1 %o 0.4 cubic

meters of stone for every square. meter of solar collectoy. - .
Many different solar collectors are available., An Jdeaf

collector would collect all the avallable solar rad1at10+ and

convert it to useful heat without losing any heat by convec-

tion. The performance of any ggi}ector can be descrlbed with

2

two numbers. .
_* The value of E — the conversion' efficiency, the fragtion
of the incident solar energy that actually gets intp e -
heating system (typical values are 0.5 to 0.8). ’
- The value of L — the energy lost from the cbllector,-per'_)
square meter of collector, per degree temperature differ- .
A:ﬁngﬁ~bﬁ1uéﬂn_1hﬁ_cnllﬁcinr‘and_thﬁ_aurside"Ltypical;yalhesu,i_ﬁA_q‘

are 3 to 5 watts per square meter, per degree Celsjus).

-

An ideal collector would have E =1 and L = 0.

Heat Loads .

The heating sysfqm is used }or both space heating |and
hot water. The enérgy required for space heating depends on

L d

¥

e

159

climate and the overall'heat loss from the structure. Climate
information is summarized by the number of degree days a loca-
tion has |each month. Degree- days are the .monthly sum o%
average daily inside-outside temperature differences. The
computer program has thése data for ten selected U. S. cities.

The pverall heat-loss for a structure depends on its size,

expressed|as a rate of energy- 1oss (in watts) per degree differ-

as well arrhow tight and well- 1nsu1ated it is, The heat-1oss5 1is
ence between inside and outside (in Ce151us) Values from a
few hundred (for a snall tight house) to thousands (for a large,
drafty house) to tens of thousands for jndustrial structures are
possible. The 1aborétory section glnes\tbfsmeans of estimating
this heat- Toss by taking certain information from hedting bills.
The h at required by hot water depends on how much water is
used and haow much it must be heated, An average family uses
100 11ters\per day per person. The water must bz heated to
§5°-77°C frpm the temperature of the water_supply, which is
. typically 5°-15°C. . ‘ - .

N & .)
\ \ . i) N .
EcvnumiC"Fadtors T . T T ‘
|
The problem with comparing the relative costs of solar

and conventional heating is that the costs are incurred at
different times. Solar systems are expen51ve to install, but
result in steady savings over their lifetime. Conventional
heating is less expensive to install but will become increas-
ingly expensive to use as fuel prices rise.)
Economists resolve this sort of problem by posing the
following question: 'If a large.sum of noney is borrowed,
would it be better in the long run to invest it and pay con-

ventional fuel costs, or to usg the money to buy a solar system?"

. ~
.

: \j Page 6/MO-05

ERIC B 160

Liad

-t

. *

The |answer depends on tax rates, fuel costs, inflatign
(;at S, interest rates, and investment opportunities

affect the calculatig

he final resulén:f SOLAR's economic analysis 1is called\
the '"p eseht\wprtﬁ of the total—~solar savings." If this
number|{is positive, it represents today's value of the net

~solar avingg. It -is less than the actual dollar savings

«

because a savings in the future is not worth as much as an
equivalent savings today. K For example, a savings of $48.30
today is equivalent to saving $100 in 10 years at an 8%
annual :

If lthe present worth of the total solar savings is

nterest rate.

negative¥ then solar heating is more expensive. Detailed
instructions for determining the savings potential for
structuteés will be given in the laboratory.

’ i
LOAD SHEDP ING i .

L B .

j\ Elec‘ric utilities must have sufficient electricity
generation capacity on hand to meet the largest, or Eggg,.
“load. Peak loads usually occur on early afternoons in the
,Eummer; duplng the remainder of the time, electric utilities

have undse? capacity, as illustrated in Figure 2.
: . (-

| © " Mo‘05/Page 7

161

\\

ERIC

Aruntoxt provided by Eric
. - g

“+their peak load, they can save expensive-construction and con-

PEAK LOAD

———-

— e cw— —
»

UNUSED

CAPACITY ; UNUSED

3 CAPACITY. '

3
ELECTRICAL
ENERGY

4 AM 8 AM 12 NOON 4 PM 8 PM
' GENERATING CAPACITY

Figure 2. Typ@cal Electrigity Demand in Summer.

. -

~Utilities must build power plants to meet peak loads ‘even
though the average load ‘might be much less. If they can limit

serve ,fuel.. One way to do this is to give an economic incen-
tive to usérs to limit their own peak demand. -
{To limit the load, ‘discounts are ‘sometimes given to
érs who keep their peak load below some max1mum value.
sers must be able to shut off some part of their load to -
keep withinm the maximum” —-this is called load. shedding.

¢ To see how load shedding might work, consider a qpmpany .

.

that has 10 electric hot water-heaters. Each heater,comes on
when the water in its tank is too cool. The heaters all work
1ndependent1y, ai it is possible that all ten might- come on at

once. This would create a huge peak load, which is ﬁnnecessary.

since some of the heaters could be left off while others are
onﬂ By staggering the heaters, the maximum load could be Kept
mjch lower.

: o ;
2

- -

Page 8/MO-05 , ‘ s

| | 16

Pl

i

1

- . .
- - - A N

1

i .

| . . .

l o

Load sheddiné is an ideal appiiéafﬁon for a small micro-

a

computer éystem. 'The computer can be programmed to make the . 5//—‘
appropriate choices to keep the total load under a’pre-set ’ .
maximum, while still delivering electricity where it is most)
needed. '

Both load shedding ‘and the use of a microcoﬁputer to
control the shedqing are illustrated in programs that will
be run in the Iaboratory These programs simulate t elec- -
trical needs of a small company. Two versions of th& program
will be run. The program MANUAL simulates the electrical) -
needs of the‘§#mpan& but has the student control the shedding.
The program AUTO simulates the same company and automatically
sheds the load. Both simulate a company with the 10 major

eleetrical loads listed in Table 1. ///,A//

i

"

’ .)
TABLE 1. COMPANY ELECTRICAL LOADS. .

I Load .
Number Load Type Size - Target Penalty .
1 Heater 2 * Exchange between 50° § 90°C » 0 ‘
2 Heating pump 1 . 8 Area 1 between 25% § 29°G_~ Se . .
3 Heating pump 2 6 Area 2 between 25° & 29°C 2 |
. 4 Water heater 1 15 Water 1 between 40° § 60°C 3 |
s Water heater 2 10 Water 2 between 40° § 60°C 1 l
6 Alr compressor " "o Pressure”betwfen 4 and 8 . |
) - atmosphere -~ 4 i
7 .| Ice melter : . 20 | Pavement between 0° § 10°C -
8 Exterior lighting 127 On after 4:00 p.m. .
Water pump 4 Reservoir between 1000 § 5000
gal . 3 e
10 . | A1l other , 0-30) "0
- , . variable L. \, s
- - L . /—' -
\/\' . ’ - ~ ¢
’ . ‘ . -
- o 163 .
. - ‘ L} ’ ”)

- .) MO- OS/Page 9 5\\\v

\ (f “o s W'
- N o
- . R «
' o \

— Each load carries a different electriical ‘dema

nd. The size
& . . ‘. .
of each load is listed in the "Load §ize"|column. TheSe units

are arbitrary.:’ : ‘

Figure 3 iT1ustrates the company heating system.
.‘represents the electrical powér required t
. and pump hot water out of it iH?g\a
is the powé;_need

Load 1
fire ah oil heater:

—offices—in-the —
% company called "Area 1." The circulating heating water is
’ warmed in the heat exchanger and‘*cooled in ithe offic%g. Load -..~
. 3 is the power needed to pump water to heat\the production
area called "Area 2." - bt .
] ‘\ 3 °
|
. | < -
A
b F »
Lo K
- IR ~
HEATER G| =
%, © HOT WATER ”
e PUMP (LOAD 1)
- . 52 4 " .
¥ 7 ® : % & o e "
. .) HEA e
I~ ' EXCHANGER ‘C;]:‘ S %%, o
B \
. ’ " > ‘ HEATING PUMP 2 (LOAD 3}
s , . \ ' < ¢
?igure 3. Simplified: Company Heating System.
. < . N S .
° Load 4 is an elg’{ric hot-whter hgaiér for Area 1. Load
5 is a second hot-water heater for Area 2.

Load 6 is a large
_air. compressor used in production.

Because it is snowihg outside, an electric| ice melter
buried in the pavement outside the door (Load 7
keep ;he'pavement,fiomnfreezing.

.

is needed to

-

Page 10/MO-A5 _
. , oo

-, %

»

"
s
N ¢

- E
_ After 4:00 p.m.;dthéjcompany's exterier lights turn on)
(Load 8). Qhe company has a.water°pump (Load 9) that is used
to fill a roof-top, 5000-gallon reservoir. . .
Finally, there are numerous motors, lights,and‘utilities'~
that are necessary, which'are lumped together as Load 10. This
load is variable; being almost zero after hours aﬁd'reaching‘
as high as 30 during the day, but d1pp1ng 51gn1f1cant1y durlng
lunch between 12:00 (noon) and 1:00 p.m. . '
The easiest wdy to shed load would be to turn everything

off. This;, of Eourse, is impractical. There is a target

range for each load, however. For instance, Load 2 controls

Area 1's ‘temperature, which should range between 25° and 29°C.
If the temperature drops below this range, management gets up-
set and the controller receives penalty points. The number of

" points accumulated'per ‘minute out51de of the target range 1s

listed in the last column shown in Table 1.

Note that there is mo direct penalty for failing to keep
the hedt exchange temperature high enough. Hewever, if the
heat excﬁanger is not hot, neither Area 1 nor Area 2 can be

'heated when their pumps are turned on

The load shedder, must take 1nto account the various

penalties. If it is necessary to shed a load that might-be

.

needed' to keep on targei, it is best to chooseﬁgye load with
the smallest penalty.

The programs simulate .10 hours of a typical winter daf
for the company in questlon. The maximum load is set at 50
units. The program MANUAL-stobs'after simulations each 10

minutes and asks the user whether any loads should be turned

_on or off, After the.changes are made, another 10 minutes

1s simplated. The total load is shown along with the per-
centage of the maximum permltted Total ‘energy used and

e . B -

MO-OS/Page.ll

Al

penalty units given are accumulated and disﬁlayed. If the
user starts one 10-minute interval at a load above the maximum
allowed, . the user is flred and the program halts., If random
varlables raise the eﬁergy usage above maximum during one inter-
val, there is no penalty as long as the overload condition

" is corrected for the next interval. . .

Detailed instructions for running this program are given
in the laboratory section.

Page 12/M0-05 : 166

) .

X

-

. LABORATORY. MATERIALS

§

Access to a-disk-based micfocomputér with CP/M and BASIC/S.MQ
1 floppy disk 8 1/4" containing SOLAR, MANUAL, and AUTO.

’

.. LABORATORY PROCEDURES

LABORATORY 1: SOLAR.

GATHERING THE STATISTICS

The purpo;e of this laboratory is to perform a realistic
economic anal&sis of a typical solar installation in a home.
~To do this, data musf,be gathered about the house to be
heated, the solar system being installed, the cost %f fuel,
and other economic factors. The data required are described
below. Once collected, it should be recorded in '
Data Table 1 (SOLAR).
1. Choose a house for the calculation.

The hpot-water load is detefmingd by the number of
people living in the house. Theospace-hqating load can
be estimated from a typ&cal monthly heating bill, the
number of degree days during that month, and knowledge of

. the type of heating..

2.~ Find the space-heat load.
SOLAR need§ the variable U, which 1is thg overall
energy-loss coefficient area produc;. U can be found

<from an existing house,using the following equation:

. e

U= 3 Equation 1 *

MO-05/Page 13

where:

o o I o'm
v

F can be
.in Table 2.

pair.

4

= The amount of fuel consumed during one month.
The heating value of the fuel in the same units.
= The average efficiency of the furnace.
= The number -of degree.days during the month chosen.

found on the heating bill and H and e can be found

" For gas and oil, e can be adjusted up 5% for
burners in good repair or down 5% for burners in poor re-

To find D (number of degree days) for the same

month that was chosen for the information from the fuel

bill,
service.

£

TABLE 2. .

an energy audit.’

[y

]

call any fuel oil distributor or a government weather
For a new house, U will have to be found from
(See ASHRAE Handbook, Chaptef 21.)

VALUES OF H 'AND e FOR DIFFERENT FUELS.

(MJ is a megajoule or 1 million joules of~energy.)

Type of Value of H in Value of H in .

Meating SI Units "|British Units Value of-e
Natural gas 41 MJ/m® 11.1 MI/fe? 0.55
Fel oil" 39 MJ/liter |140 MJ/gal 0.55
Electricity 3.6 MJ/kwh , 1.0
3. De51gn the size and orlentatlon of the solar collectors.

The size and orientation of the solar collectors are the
most important choices to be made. Flrst look at the

house and determine how the panels could be mounted on

"the south-facing side.
is about '15 degrees more than the latitude.

0

Page 14/M0105

1)
.
.

oy

It. is best if the collector slope

Measure the

-

¢

slope that would be used and measure how many degre s
away from due south the collectors would face. Thi
is called the azimuth angle; it should b2 positive tor

west-facing collectors and negative for east-facing
collectors.

The collector size is an important factor,; in
square meters, it should be approximately one-third of

U. It is advisable to repeat all 'the calculations|for -

several different collector sizes to find the most]
economical .size. Estimate the largest size the hobse

could accommodate. ’ ! %
Choose the collectors.

Three numbers are needed for the collectors:

* The value of E — the conversion efficiency.
+ The value of L — the energy loss coefficient.

* The value of V — the variable cost in dollars
per square meter of collector.

Typical values for these are E = 0.7, L =
4 W/m3C°, and V = $30/m?.

A local business that installs solar collectors
could give some help on the figures needed. The defini-

. tions of E'and L, in terms that might be familiar to

solar technicians, are as follows:

E

F,o(ta) h :
R n Equation 2

FoU i

L = Fplp , .

.

The
The
The
The

NOTE:
. "Solar Heati
5. Design the

ee' references for further details (e.g.,
g Design," Beckman, et al, Chapter 2.)
olar system. ¢

SOLAR needs the storage capacity, S, of the reservoir
and the total cost, F, of the heating system — except for
the collectors. The storage capaciiy in cubic meters
should be apout one-fourth of the collector area in
square meters. Use this with the help of a busipess that’ '
sells sola:#equipment to estimate F for the house in
'question._/gssume the current heater will be used for
backup, sdido not include its cost(?n F, even if it needs
replacemenF. Typical values for F are $1,000 to $2,000.

6. Finance the sdlar system.

The solar system is assumed to be financed by a
mortgage. SOLAR needs to know the percentage of down
payment required, the interest rate,and'the'length of the
mortgage. ' ' '

7. Other parameters. ’

SOLAR- needs estimates of the following:
a. Income tax rate — the average percentage of
. income paid‘in taxes by the home occupants.
b. Property tax - the actual percentage of” the
- property value paid in taxes each year. ~
c. Property tax change — the annual percentage
rate of increase of property tax (chegk with

. the local.collector of taies).a .
¢ d. The cost of fuel — how much fuel costs per unit

) 8.

of energy. SOLAR needs thrs in cost per
megajoule. A fuel bill will give %uel costs
in ‘cost per unit; then Table 2 can be used to
convert this cost.)
e. The rate of increase of fuel costs (percentage
" per year) — this number will be difficult to
estimate over twenty years. Between 1978 and
1979, 0il increased 100% in New England; but
3 that rate is unlikely ‘to continue. Check with .
the local' utility eor fuel supplier for informa-
tion concerning increases over the last five —~— — - ——
years.
f. The salvage value - SOLAR needs an estimate of
the value ofi the sdlar;systanatthe end of
the analysis period (t;enty years). The
estimate is in terms of a percentage of the
cost of the system. If it will have to be
totally replaced, the value is zero; if it
requires no change, the salvage value %s 100?.5

-

- 'RUNNING THE ‘PROGRAM

L3 ‘ = v

{

Run SOLAR. T .

-

Load BASIC and request the program SOLAR. When_
it is run, it will 1nteract1ve1y request values for all
the parameters prev1ogsly ‘described. Enter those values
and record the results. : ’
Find SOLAR's memoTry needs’.

WHen SOLAR runs, the operating system is in high- ¢ ,
numbered memory locatlons, the BASIC interpreter is in, '
low- numbered memory IOCatlons and the program is

MO-05/Page 17

between these
can be found
be 1, 2 or 3
much memory 1
for each vari

in the BASIC command,
,fas wn in Figure 4.

3

boundaries, as shown in Figure 4. TKe addresses
"GETADDR(N)," where N.can
The only unknown is how

.
* ' ! < l

occupied by variables. Five bytes are fequired

ble used in the program.

-2

Use GETADDR to find the memory used by SOLAR and BASIC.

Given the in{

ormation that 300 varlables are used,

estimate
kY

the smallest

»

amount of memory requlred by SOLAR.

}OPEHAHNG SYSTEM
- GETADDR (1)
}UNUSED ,
. }VAHMBLES .
GETADDR (2} .
) . }SOLAH . ,
GETADDR (3)->
i : }BASIC

L]

Figure 4. Memory Map.

LABORATORY 2:

<

LOAD SHEDDING.

1. Run MANUAL.
) Load the BASIC program MANUAL and run it. It will .
display the status of electrical use similar to that shown
in Tablel 3. At-the ené~of each simulated ten minutes, the
program will ask whether any loads shouid\?e turned on or

’

Page 18/MO-0% \ BN - - .

status.: When all changes have been made,/ type

(zero) to fnstrugt the computer to simulate ano
ten minutes. ‘ /
"The program stops at the end of thé day.
" the total energy consumed and the penalty unit
in Data Table:2 (Load Shedding).
the program to get more eXperience.

L

TABLE 3. TYPICAL DISPLAY FOR
. >LOAD -SHEDDING PROGRAMS.
. F

/

er
7

Record
incurred

If time permfits, repeat

« ./
. Load ’ / .| Status
Numper Load Size |Penalty | Controls Target Value [(1=0ON, 0=0FF)
1 | Heater 2 - Exchange Temp. 50~90 60 1
2 Heating Pump 1 8 ‘s Area 1 Tepmp. 25-29 29 0
3 Heating Pump 2 6 2 Area 2 Temp. 25-29 25 1
3 Water Heater 1 15 3 Area I‘Water
! Temp. 40-60 45 0
5 Water Heater 2 10 1 Area 2 Water) |
. Temp 40-60 42 1
6 Air Compressor 10 - 4 Tank pressure 4-8 3 1
7 Ice Melter ° 20 ’ " Pavement Temp. 0-10 0
8 Exterior Lights 12 |71 Qutside Lights On afte
4 3417 1
9 Water Pump 4 3 Gallons in tank } 1000-50Q0 0
10 All other 8 10 > . 1

I . ’ »

] .)

2. ,Run AUTO. .- . ’ ;\ .

¢ Load and run the BASIC program AUTO. This program —
geﬁerates,a'displdy similar to MANUAL, but it makes the
load-shedding choices automatically. Recordg the results
of a simulated day's run, using AUTOMATIC, 'in Data Table 2
(Load Shedding). Does it do 'as well as it does in MANWAL? \

3. Determine the memory required by MANUAL and AUTO.

) Follow %he procedures taken in Step 9 o%r%he previous '

A

laboratory .for both load-shedding programs.

major part
~of these programs consists of simulating the situation.
" The partfdf"KUTO used to control the Joad can be estimated
as the difference in length between-MANUAL and AUTO. This
o . diffeqencek plus BASIC, is what would be required for an_ \\\\
actual lead-shedding computer. Record/this value in Data
Table 2 (Load Shedding). :

-

. /

-, . / .
Page 20/MO-05 _ .
: ' S SR . 174

ERIC ./ L 7 . .

S

~

'DATA TABLES -
J - ,

DATA TABLE 1:, SOLAR, - -

>

STEP 1: Nomber of people in hodée:
TEP 2: Method used to—find.U: : . . ®

Calculations:

5

Value of U: . ' . .
STEP 3: Collector slope:
Azimuth angle: . .

Largest possible collector size: _ " m

Collector size chosen: . .m
STEP 4: Coversion efficiency: B .

Energy loss coefficient: L W/m2C° s

Area cost of collector: V $/m?.

Describe how obtained: : <

-

STEP 5: Storage capacity: S m :
Totél fixed cost: F : $
STEP 6: Down payment: C %
' ° Intergst rate: : % per year
STEP 7: Tax rate: - % e
~ Yearly\Property tax rate: ° %
* Yearly Property tax change: . '3
Cost of fuel: ¢/MJ -
b Annual- fuel cost increasg: ' %

Salvage value: %

bt}

[

s

7
,MO-OS/Page 21

>

'Data Table 1. Continued.

and total over 20 years.

y]
“-w

1

STEP 8: Attach print-out.if poésible.ﬂ Otheiwise; record’
the present worth of solar savings for each year

b

" Year

Saviﬂﬁ

4 Year = Saving

=

«+ 11

12

\\J/

13

¥4

15

16

17 .

18 -

19

4
—
olole Nl jlnle]

20

Lo~

)
Total Solar Saving:

~

STEP 9: GETADDR(1):

GETADDR(2) : .
. GETADDR(3):
‘L ~ Memory required by BASIC: \
- by SOLAR:
(include variable Storage) “—
, ‘ (-
L

i

Page 22/M0-05 : >

. 4

* ' .ﬂ
y -

DATA TABLE 2: LOAD SHEDDING.

STEP 1: MANUAL . ' ‘f/,,

Energy consumed: ‘
Pengltz units: e

STEP 2: AUTO
- Energy consumed: ' /

Penalty units: 5
STEP 3: _ Manual Auto k& >
GETADDR(1):) ¢
GETADDR(2) :)
GETéiDR(S)! ' \ .
Memory required by BASIC: '
- ; . b)’ MANUAL: 4 . J
* . by AUTO: , | :
\(1
Approximate memory required,by a load-shedding
program:__. bl R
) N2
1Y ‘ . -
A
: MO-05/Page 23
o AF

-

REFERENCES foe

Begkman, et al. Solar Heating Design. Wiley Interscience, 977.
ASHRAE. Handbook of Fundamentals. Amenicaﬁ“Society of Heatihg,

Refrigerating, and Air Conditioning Engipeers, 1972. -
3 . : '
.] J
I a >
e . ‘ °
(/, - - -
- /S , .
/
v e
E 4 “~ 2
—
e -
E - .
o s - 1
. AN
— - 0 g
i ' & > [N f;
)),
L.
a ‘ . /\ |)
LS - -
* s)
-
- »
* L} ¢ = }/
[}
. e & ’ ,
- - — rs
7/ . \ N
=B ®
) . - . .
" . . “ N
v 14
.) fes
- . W J .
x 3
v ~ - S * R - -
+ 4
~ 8 ‘
- « n - . D :

Page

24/M0-05 ! S . .
- A7 ot =

*

()

.ENERG

QP CONSERVATION AND USE .

.’ , . .
< O . ¢
N , -
, D .. Y
. b4 ~ 2
- - .
. . ,
-
* N 1 ~
L] . . o
. [.‘ ~
* .
. » - s . -
“ R -
’ >
* - iz -
3 N ” E
. A .
. . e . R
’ . @
) -

L - ‘
R
ot N ’
PR h . [.
v . ‘
. - ., .
. . .
. e,
O) R
4 . R =
. g)
» L. .
. PR . i
e . 7 , .
L . A
.- = ' . .
. * -
- L
. .Q_ .) ‘
. .
R TR [’
* N
B - . N
B M .
p 34 . .
A Y - . .
« - T . -
. Al - -
Q‘ -r .
) ’ ° - : . .
N - . ‘
.o 3 v . -
- T -
: 5 - .
; R " - \ o-
% N .. < .
3 A B T
B s - N .
. M N s .
-2 - At 4
) e N B B
PR o - r ” ‘,‘ «
e o, ‘ IS N
SN = PR
o -, >0l .
S &
MICR@C@MPU,IER OPERAI IONS o4
A
LR . < 5

NILE R4 ﬂ,’-\' 5 “3:."0"3;*_1‘ o PR -
R "‘ ‘.3;.'_,,\ BETRG? A by

.
A~

3

4
-f P .,..»‘ o

‘,.,

ergragli-of

A -

. .. - .. INTRODUCTION

. ®
* . .]
- 5 s .

Computers "speak" but«one language — machine 1anguage -
nd all instructions given to the computer must u1t1mate1y
be in this form. However, to program the computer directly ’

in machine language is unnecessary. Not everyone
opossesses this skill,.which takes a considerable time to
develop; The .average person can communicate with a computer

via a number of hlgher level 1anguages that are more like
i-Sh- f%reaé—into—the—eempu%efLs—A————————————————

memory, and from that point onf’the operator can use a)

language that is easier, while the computer translates

that to machine language — a process called "inteérpreting."

.Of course; the more sophisticated the language, the more WV

g%emory is.required for interpreting, which is one reason

. . . . R . . ~
there is no ‘one lapguage that is universal or uglimited in & -

- >

application. . <

°

. To load a computer's memory bank with the entare un-

abrldged dictionary would not be econom1ca11y feasible,
.when only a handful of words is necessary. For 1nstance,‘
in the sc1ent1f1c and engineexing community, FORTRAN, (FORmula
TRANslator) is a practlcal language to use;:it is partléu-

. - 'larly designed to ‘process formulas and sc1ent1£1c term1nology :
COBOL (COmmon Business- Or1ented Language) is used in most ‘ ‘
business and.accounting appllcatlons.

Y
»

., - + -In this module, the eléments of a simgle; all-purpose'—

" but limiteo»— language called BASIC will belpresented.') s
: .BASIC is an abbreviation for Beginner's All-purpose Symbolic .
- "Instruc%ibn Code. It enables the user, for instance, to . L
S enter slmple codes _such’as "+", which, will .cause’ the ’ o

' computer to eXecute the machine, laﬁggage program that adds . .
?;no numbers together,f E ') 2 SO -

—

. . o
N - . ’ r. -
- - . - . .
- . ' - +
- .

o
- AN
» e .
¢ .

An important point that should be understooq,e6hcerning
. the language of"BASIC is that, while "it is widely used, there

are also many other variations in use. Sbme versions of BASIC
¢ . have a limited vocabulary and w111 not recognlze commands that

with the partlcular version of ‘BASIC for the computer that they
have access to. ’

-) >
' . -

|
’ are part of other BASIC programs Students must become famillar
|
|

JBEC;)UISITES

| . .
|- . \
The student should have completed Wodule MO- 01 through MO - 05<a

of | Mlcrocomputer Operations. 0
s , / ’ . —
OBJEGTIVES o w ¢
Upon completiSn of this module, the student should be
¢ able to}:) . ’ : ,
1., Define the action of the follqging commands in graphical
¢ BASIC: . y
a.| ERASE N)
b.| - SCROLL ON
‘c.] SCROLL OFF
d. MOVE N - .7
e/ TURN N P
f.- » HOME |
- g4 DOT . .] \{_y)
h| PEN UP]) -
" i| PEN DOWN K : T
i 5/ ERASER ON . i
“ e + K{ ERASER OFF 9 L
LA T . - w 3
‘." -F"Q q‘? L) . 7 .
- Page 2/M0+06 o - ' o o " -
. . " ‘ . .lf%1~) . .,
. ' .) G

r .
a . "

8 . R . F

6 & -

4
.
. 7 <
LY - v
™
i.,’
- -

1. JHOP N . S .
m. - JUMP TO X,Y |

n. LET . e
.. INPUT - . : PRENLLEE
p. ¥®OTO, S0

. NEXT g . \ v ' . 3 .

s. NAME . g . |

t. “NAME P % Cog h oo

u. SAVE e e

'v. OLD . .

‘'w. RUN. .o .

x. ~LIST- ., . * - - " -

y. PRINT _ e)
2 Determine the éction causéﬁ by prégrams using‘the§e

A J

commands g

3. Write short ﬁrogxahS'using theseJcomﬁands.]
4, Define, the following terms: ‘ L.

a. Graphics c mﬁands:" o ’ .

b. Sc¢rolling. N J. R .o .
’ c. Screen coordinates.-:. = . N .. g

d.” Variable: \ ' . T

T

. - Expression.
. FIoatiﬂg point. ' ':)V

e ' .
£
g. _KEZ§Fissa. to “ ' | T

, ’ R
h . p\. N . 4 l ‘ { 0

. R . |
1. Iteration. L i

'

y1. Immediate mode. _ "
m. Programmed mode. ‘ !

-J ™~
) . . ot !
5. Evaluate BASJIC expressions, using the rules of ¢ .

precedence the operators +,. -, /and /. -)
4 * ‘ ‘ - ‘ L
‘\ ; . i 4 . iré‘,
’ ‘ v ¢
.v ‘\: N J - e
. : K: ‘ . MO-06/Page 3.
- | ; 182 L~ ' .
_ RE |]

- ¥ / I R N\

. -

j. . Range. R . . g;g
k. Rules of precedence. | o : \

{

6. Evaluate numbers in floating point notatiory
7. Use BASIC as a calculator to evaluate-expressions.

-

| |
Page 4/MO-06, |

T

B .
- P . /
¢ . . .
. . H .

-~ BASIC GRAPHICS .

BASIE is a widely -used language that has many practical

. applications Tt is espec1ally useful to the beginning

»

‘¢

DRSPS

~called graphlc commanés,,are unique to«the BASIC language

student as a MEirse" language to-learn in computer programm ng
The language consists of a series of instructions ,that are
1ntrodueed in logical groups and then applled to typical
prOgrammlng ‘problems.) "
. + Not all BASICs are the same. The particular version
1ntroduced in ﬁhls module includes the ability to draw figures i
and de51gns on a TV display. This abllltx makes it e ¢ |
learn the’language but is not part of mostnif§ICs R “
In the sections that follow, 'no distinefion will be made . |
between the wofds "command'.and "instruction." There are
51tuat10ns in{computer operatlon where these words do have
dlfferent!conn ations.. ' . |

-~

- Jtmx !
i

CORE GRAPHICS - ; ‘ B .
, Hes, L

il .
.
enme A

The-first set of inétruct}ons ﬁe’be"studied in th£§
module arg the 51x llsted in Table 1, which control th
graph1cal dlsplay on the, video screen.. These iﬁstructlons,

used in thls module because many. computers whlch}have BASIC) .
capability do not necessarily have video terminals that have °

graphic capability. , K - . /7§

. ‘w ’ . - ¢ ! ’ * N ! ’ .
r . " . MO-06/Page 5 {
i

CORE GRAPHICS COMMANDS.

TABLE 1.
" COMMAND FORM y ACTION ‘ .]
S € .

Erases the entire screen.
Permits later RETURNs to scroll the

ERASE
SCROLL ON 0

‘riage returmwr key is pressed,

'Serqlling is convenient because it permits man

“screen. .
SCROLL OFF d Stops later RETURNs from moving the L»———J///
screen. .
MOVE N . Moves the turtle N units forward.
TURN N P Causes the turtle to turn N degrees
. counterclockw1se »
HOME . Returns the turtle, pointing to the
= right, to the center of the scregn.
) .))
Screen Control \

. \
- The first command ERASE causes the screen to he/éresed.

Simply typing the-word and then pressing the carriage return:
key <ret> causes the screen to be erasey.

When a line is.typed on the TV dis
the dperato

ay screen and a car-
normally wishes the
line just typed to move up — in the same
a typewriter does; then any other characteXs that atre entered

anner that paper in

will appear in the line immediately under the previous one. If
there are several lines on the-screen, all of them should mowe
up when 'a carriage return 'kéy is pressed. TNis property ‘of

. -]

moying the.entire screen up one line is called scrolling.

read at one time on the’'screen. The pair of in§tructions
SCROLL ON and SCROLL QFF control scrollinglof*th 'screen.-

. " There are tlmes when scrolling can présent.a problem —
such as’ those times when instructions are given fo figures to
'be_dfawn on the screen. Each 1nstru§t10n is executed when a’

+ . 4

Page 6/M0-06 . o O '

lines to be) .

’ ..

k/ . , /
carriaée return key is struck; but if that‘%arriage return
causes a|scroll, the figure being drawn also s¢rolls upward.
Then, aftet only a few instructions, the figure will be

AN scrolled| off the screen and lost. Consequently, scfolling is

not wanted .in-most graphics appllcatlons

. Thel SCROLL ON and SCROLL OFF commands e11m1nate this pro-

! . blem by [putting scrplling under usér dongzol. After the
, 'SCROLL QFF command is'typed,'subsequent carriage returns Llll
- not cauge the screen to scroll. After the SCROLL ON command

Vis.type%, carriage returns will cause scrolling.

-

Turtle Commands
The remaining three commands in this_group — MOVE, TURN
- AND HOME - always refer to an imaginary turtle that .can move
around on the screen, leaving a trail that can be seen as a :
line. [This turtle will -be used to draw figures and desighs ¢
o , on the|screen. The MOVE N command causes the turtle to move
a cerntain distance and draw a line. The distance the turtle
moves is determined by N, which qan'be any number.
On the average TV, the MOVE 5 command causes the turtle
to movg forward approximately’ one?centlmeter, leaV1ng a line
. of that length behind. The ‘relation betweghn the number used
) for N Bnd the. distance moved on the TV depends on the TV; or,
anocnefr way of saying this is that the units used for N in
the MOVE 'instruction are arbitrary. To give an idea of the
range {of values tlfat N might take, a MOVE 0.2 instruction
causes the turtle to move the. smallest perceptible amount on
"the Tj, and a MOVE 128 causes the turtle to move from the far ____ -
left edge to the far rlght edge of the TV screen, whatever ’

’,

its size.) ,
{ ° L

| - ' L .~ M0-06/Page 7

- 186

——t
'
-
.

)

-

The TURN N causes the turtle to.turn N degrees. If N »
is a positive number, the turtle turns N degrees.to the left |
(counterclockwise). If N is negative, the turtle turns to

-the right. Any reasénable number .can be used for N: TURN 90
reéults in a 90° turn to the left; TURN 270.results in a turn
of 270°, which is the same as TURN -90; TURN 360 cause§ the
‘turtle to turn around complétely ané is the sémé as no turn
at all. ., ; ,

When the TURN N'éommand is. typed agd the/garriage feturn
key is pressed, there is no immediate.cliange in the TV dis-
play. However, the next MOVE command will be at an angle,
relatife to the last Qnd determined by thé intervening
TURN command. For instance,. Figure, 1 shows the affect of a ,
deries of MOVE and TURN ‘commands on, the TV display. The
triangle was drawn with the commands, MOVE 60, TURN 90, MOVE
45, TURN 126 and MOVE 75. *The dotted lines, arrows and P

ﬁ not appear on the TV. \ ' '

«_commands d

LS

TURN 126
L] f -

, :
: ‘t . MOVE 60 ¢

Figure 1. A Triangle Drawn with
MOVE antl TURN Commahds.

;" . . 1 - B
Page 8/MO-06 :) 187 . -
D . o ,

N\ . 2
The HOME command causes the tq;tle to go to its home,
which is at ?he center of the screen facing to the right,_
HOME is -used as a convenient way of having a standard place

£rom which tolg\grt drawings.

These six cpmmands (Table 1).can be used together to

J
produje an unlimited number of line draw1ngs ,&Flgure 2

rates how a box could be drawn 1n -perspective,, using
a series of 21 commands. At each stage, the commands listed

illus

on the left producethe drawings shown .on the right. . °

1

(a) - SCROLL OFF
- ERASE
HOME
MOVE 30

(b) 'TURN 60
MOVE 25

MOVE

=

TURY,
MOVE
TURN
MOVE -

L 4

3

Figure 2, Drawing a Cube.

3
:

L

¥ 7/ ' .'
. L -
_ The preceding example illustrates that negative numbers
can bé used for N. A move of -30 results in a move backward
$f 30 units. The numbers do not have to be integers; the
computer.can understand commands like MOVE 2.0174. The re-
sult may:>ot be drawn with the accuracy that such a prec1se
number implies, becayse thg smallest perceptible movement on

the screen corresp%nds to MOVE 0.2. .
.) N -
/" - EXAMPLE A: DRAWING'A JET. \ /}
Given: = The Iine drawing in Figuye I -—\\\ ‘\ ’ .

§égure 3.
Line Drawing
of a Jet.

e drawing

Find: The commands that wouId dfaw this T
" of a jet on the TV
Solution: For simplicity, the length of the MOV
is chosen to be equal to the length of the line
of the figure (in centimeters). - There may be
some variation due to shriniage of the illustra:-* .

<
-
o

command

. tion during»nrinting, but if the bottom of the
- dirpldne is 11.2 cm long, then the turtle command
"is MOVE 11.2. 'To draw the next part of ‘the o,
flgure * the sloping front — the turtle mﬁst be ‘ °j‘
- turned before another MOVE command ts 1ssﬁed RN
+ The turtle would havé to turn around t the left N

Pial}

* . as shown: -Since the turn is to the left, the an- |. .7 : (d'\
. gle is'positlye, and a protractor will" show that .} ~ :~:<
- : * - —= ‘\:» - e\ . . S \\ S
! o . S L R NN
¢ - , - , e = % »‘.\—‘\\;‘:
Page 10/M0-06 : RN
O e N

2 .
- e 0

Example A. Continued. . . -

it ‘is numerically equal to 160°, This process . -
of moving and .turning is repeated until thq.eﬁtire ‘

figure is drawn. Note that the third turn (which
is necessary before the rising part of the rudder e

is drawn) would be to'the rlght This 1s‘done with S
a TURN command with a negative value for the\angle
The complete figure can be drawn by the follow1ng

series of commands: .
.. HOME . : . '
b : — MOVE- 11.2 - - .- -
TURN +160 :
) MOVE 4.5
:) TURN +28
- MOVE 4.9
TYRN -52
MOVE 3.3
TURN 136 - .
- MOVE. 3.5 S : .
» - R
v - .
ADDITIONAL GRAPHICS COMMANDS' ~ . © 4 S e
¢ N ' o ' . < i

- N , v N

The next series of commands is "shown in Table 2.® These
ddditional graphics commands are necessary .in many situationms.

:.'T /

TABLE 2. ADDITIONAL GRAPHICS COMMANDS.

-

COMMAND . .ACTION

. DOT I) Causes(a dOt to be drawn at the current
\\\q turtle location.

PEN UP ' Causes_subsequent MOVE or JUMP instruc-
. tions to leave no line on the screen.
Cancelled by PEN DOWN.

PEN DOWN . Causes subsequent MOVE or JUMP 1nstruc-
; tions to leave a line on the screen.
Cancelled by ERASER ON or PEN "UP.

" ERASER ON " Causes subsequent MOVE or JUMP instruc-
tions to erase the “contents/.of any .cell
crossed. Cancelled by- ERASER :OFF and
PEN DOWN.

ERASER OFF . | - Causes 'subsequent MOVE or JUMP instruc-
. tions to neither &rase nor 'leate a line.
' Cancelled by ERASER ON. '

HOP N - - Move fprward N units without leaving a-
. . ,line. N can be any valid BASIC expres-
sion. : : Y

JUMP TO X,Y Move the turtle from its current posi-

i tion to the coordinate position, X,Y, in
screen units relative tg\HQME X and Y
can be any, valid BASIC expression.

-

i
"Pen Control

-

Yooe .

DOT causes a single dot to bé drawn at the location of

the turtle. For exa@pleg if the commands

iy
ERASE
. HOME
.DoT *

ey
. - - ! ' * .

are entered in that order, the screen will be cleared — except

a ¢ .)

+

Page 12/M0-06;. + : ~.

S lzli ' }J

<

- f—}

= - . s

S o)
for a single dot in the center, which is ths\HOME 9051t10n of -
" v

the turtle. - o Cs . - L : 7
~ . PEN.UP and PEN DOWN are a palr of instructions that con-
trol whether or not a line is drawn as a tesult of the MOVE
- -* s;and JUMP TO 1nstruct10ns‘ After the PEN UP command MOVE
\\commands do not reghlt 1n a line being drawn. Once a PEN UP
<. instruction has been 1ssued it can be cancelled. by "y PEN ‘
DOWN instruction. After PEN DOWN is issued, then “all sub- 4
sequent MOVE commands do, leave a line. A ‘. N
. : R Ca

o ‘ o ' .. &
2 ~
. - 1 .
Yoo ¢
.

>

-

65 . EXAMPLE B: DRAWING WITH PEN CONTROL.&
.

Giver: ' The drawing in Figure 4. .

.
N
/f !
.
s
.
P .

v ® -

¢ v L
Figure 4. oy &
Trlangle Drawn with -
Pen Control. .

L

-
-~
.

. ¢ 4
N . N -~
- R .

¥Find: - The commands . that would ‘draw this triangular- . Y

5 shaped flgure on "the TV. f/ *
Sdlutién;\ The follow1ngfcommands w111 complet

L]

bEn DOWNY S\
'MOVE- 3 . ° Draws .llr;e \X

N ' PEN UP \}%' g4

o . * . MOVE 2 .

4 t)
" .
Example B. Contdﬁqed. t
*‘PEN DOWN .
MOVE 3 } ‘ Draws B .
TURN 120 ~ B-C corner -
- MOVE 3 Draws' C
. . e L
o . ﬁggEUg } . Hops to start of D'
o | ZEN DOWNY .
. MOVE 3 ‘ -
% . TURN 120 » Draws D %Pd E vertex
® MOVE 3 -
’ PEN UP o
MOVE 2 } Hops to F
PO praws
*\ / CY I . N * . 1 .
S N ‘\ " To draw a dashed line, the following series of commghds
o could be given to the computer: .
T T : | PEN DOWN
' o MOVE 2
- \ o
. oo . PEN UP !
C . ~r. MOVE 2 +
- , . PEN DOWN
- S MOVE 2 .
’ PEN UP ?

S TN . MOVE 2 . , .4

; : The ERASER ON- and ERASER OFF pair of instructions control

nan 1mag1nary eraser carried on the thrtle. When the ERASER ON
command is,the last of the pair 1ssued then sgbsequent MOVE
commands will erase any lines that cross the path of the turtle.
.To turn off th1s erasing feature, the ERASER OFF ‘instruction

s ‘ can be issued.

Page" 14/MO-06 | ” ~

ERIC - N ., 193.

The PEN and ERASER' commands interact because it is illog-
ical to have the pen down and.the eraser on. Thus, after the
ERASER ON command “is issued, the pen is automatlcaliy up.
Similarly, after a PEN DOWN command, the eraser is automat-

ically off. ’ ‘ , ’
For example,-to draw a line and then erase it, the fol-
-, - . T
10W1ng~commands could be issued: .
) PEN DOWN Ee
\ " MOVE 20 v
ERASER ON
MOVE -20

The MOVE -20 command causes the turtle to move béckward 20

unlts, and since the eraser is on when this happeng, it .erases

the line prev1ously drawn ' : ; ¢ o

Other Turtle Moves

-~
AY

The HOP"N command causes the turtle to move forward with-
out 1eav1ng a line and without affecting whether the pen is up

.or down. Even if the pen is down,a HOP N command will cause

the turtle to move forward:N unlts >and not draw a line. Thus,
another way of drawing a dashed line would be to use the fol-

lowing commands: =

4 PEN DOWN

v HOP 2
‘ MOVE 2

HOP 2 .

MOVE 2 _

HOP 2 . . . ' ot

-

For the student to understand the JUMP TO X,Y instruction,

the concept of screen coordinates must be introdgced.' The: TV

X
o ' MO-06/Page 15

194

screen, as shown in Figure 5, can represent .a piece of graph
paper with the scales shown. The origin of the graph is in
the center of the screen, and any point can be described by
~its X and Y coordinates (gymholized by X,Y). The X (horizontal)
aiii runs from -64 to +63.8
" -51.2 to-+51. On many TVs,
can be seen. The visibie coordinates run from approximately
-45 to +45 in the Y direction.\ As a rgsult, the upper right- !
- 'hanﬁ?corner of the screen cgn b described by the ‘coordinates
63.8, 45; and the lower left-ha d cerner can be described by
the cooraingtes,‘-64, -45. As shown in Figure 5, part of the
“screen at the extreme top and bottom cannot be seen.

The' Y ‘(vertical axis runs from

ot all of these coordinate points

-

- .

e v

NN\ “ N\ M \ LIMITS OF SCREEN
NN
: . AN

. NN
: (0. 45)

L3

(0, -64) . (0. 0) (0. 63.8)

v

(0, -45)

AN

NN

1

\ -k\

Figure 5. The Use of Coordinates in a TV Display.

>

Page 16/MO-06

>

The turtle can be instructed to jumg to gny screen coordi-
nate by use of the JUMP TO X,Y command. The result of this
command is affected by the PEN and ERASER commands in just
the way that the MOVE instruction is. If the pen is down,
then the JUMP TO command will cause’a line to be drawn “from
the old positibn of the turtle to the coordinates given.' If
the eraser is on, the turtle will move from the, old position
to its new coordinates and erase any line aloné'the way.

For example, the commands

>

HOME
PEN DOWN
JUMP TO 20,20

4

w111 cause 2 line to .be drawn from the center of the screen
to the coordlnate 9051t10n (20,20). Figure 6 shows the affect
of a number of JUMP TO 1nstruct10ns.

[

TR LA T T T RRRARE
THAER A | Te7. 503 47 :‘ 147, 50}
THTEFRHE DY T i
TL Aay| A R 40 TVi]
S W SR iy By _('28- JB)/ i3 I (55. 35’
T HHR A 11U ! | L/
- - RPN Py U - A' 4 c “ LY
C)-)] t... (Y |- AA e \ . L f’ Ll
1IrersrriiTire A \ 20
- CHTTHTAT LTI HHT . Pq
TR T A TN A HHTHTTH L 155, 12)
LU 50, 094 \ 10 TRRES!
| 4 p I-A\:L \' = i ‘/ﬁ /‘ - l]
T ETE80,-50) 1d4oN-30 | k20 [M10{]1}9,{10 #2030 [{40} 50| bO
NER = g JJ A
T T | ! L4 ! v
- / 11
Rosgugngpayh y \ LAl /,A
PEH R B /] pe
-6, -16) {,1 8P4
(-50, -18)-NH T T 4
o D ‘~~ H ’V_'
yrgnudund It {L ’)
= L -4} 1 N ' /
LR A L NG A >
gAngNannihdndyniiy NN ’f 40 A1
A 1 EELIN 11] -+ .
L ETEE R EH L N THIE NI 414
Ak udnsdgdh -8, -486) NE
FEEELER R T 1 | t) i LT X
REY S 21]- . - S NN .- . - o L1~

,Figure 6. Result of Several-JUMP Tp»Inétfuctions.

\ .

e T MO:Q6/Pagb 17

-~

The fOIIOW1ng instructions result in the drawing shown
¥ . 1n Figure 6. .
' PEN UP o
JUMP TO -50,-19 ~
*PEN DOWN e .
JUMP TO -6,-46 *
JUMP TO §5,12
JUMP TO 55,35
JUMP TO -6,-16
3 JUMP TO -28,36 .
) JUMP TO -50,9 . "
JUMP TO -50,-19
PEN UP 5
JUMP TO 55,35
PEN DOWN -
JUMP TO 47,50 //
" PEN UP : ’
“ JUMP TO -7,50
PEN DOWN .
JUMP TO -28,36
4« . “PEN UP
JUMP. TO -6,-16
PEN DOWN
- ;) ' JUMP TO -6,-46 ~

The 13 graphic commands ‘discussed to this point are all
that are necessary. to.produce striking affects. The examples
above show that different comblnatlons of thess~commands can

produce interesting results. .
- - o .
Page 18/M0406 . ' S .
. . 19>

-

“

“\\.—i

-

~ COMPUTATIONAL COMMANDS

: »
The commands previously covered did not include those
that permit calculations; therefofe, this section of the:
"_ﬁodule outlines .simple commands that ;11:X‘the user to com-
pute with numbers. Table 3 shows two cempands and the basic

" arithmetic opefatiohs that are to be studied at this point.
v

A}

L]) .
TABLE 3. g'THE CORE COMPUTATIONAL COMMANDS AND OPERATIONS.

, Commands Action
LET\ variable =;exp$§ssion Evaluates the expression
and gives that value to the
<1 variable. ‘
"PRINT variable > Prints. the-value of variable.
‘expression 1 + expression 2 Adds the value of two expres-
') sions. .

expression 1 - expression 2 | ‘Subtracts expression 2 from
expression 1..

. expression 1 * expression 2 Multiplies two expressionms.

expression 1l/expression.2 - Divides expression 1 by
expression 2.)

-

THE LET INSTRUCTION

Y ! ,The LET instruction introduces‘the idea of a variable.

. ' A,variable is a letter that has"“a numerical value. For oo
instance, use 6f the instruction LET X = 7 gives a value of 7

“‘_‘Ré;ﬁ,to_XAg_Qngguihi§‘29Q9§E§¥QES been issued, tﬁen‘the letter X

' can be used in the same way;;ﬁﬁgéféggaﬁfbé used. For in-"

stance, the pair of ihstructions * o

. . .
© ~ . 1 *
: o)

N v -q . . - . \.

T - - | Mb-06[Page 19

»

LET R
MOVE R

15

results Eg/assigning the number 15 to R, so that the MOVE
command moves {he,turtie 15 units. . N
The word LET méy be omitted from the LET command in the
. versjon of BASIC used in this module; therefore, LET R = 15
and R = 15 are equivalent instructions. ’
The use of the equal sign in the LET instruction is\spme-
what different fromvitsfasual use in algebraic expreséions"
The expression R= R + 1 is illogical mathem&tically because
there is no value for R that will also be oné greater than.R.
Howe;er, the expression is perféctly logical in BASIC, particu-
larly when it is interpreted as an abbgeviation for LET R = R
+ 1. This instructiqn take; the current value for R, adds 1
to it, and stores thevresult in R. For instance, if R were
15 befotre this.instruction, it would be 16 afterwards. '
In this BASIC, a variable can be ‘any single letter or a-
letter followed by a single digit. These are valid variables: 'fw
A, X1, C9, and Z. These are not valid: VAR, XI, QlO, and §.

° v
. < y] -
- R
[}
2

Arithmetic Exifessions -
The LET instruction can involve addition, subtrabtion,
‘kuutiplication-or division on the right-hand side of thelequal
sign. Ffr instance, the following are four valid BASIC instruc-
tions, each of which assigns the number 12 to W: -

- : LET W=15+ 7
' . W=23*4

- W= 72/6 ”

- : LET .W = 15 - 3

.Page 20/MO-06.

o Loy

The symbol for multibiication'is a star (*), which is used in-
stead of a period or an "x" to avoid possible confusion with
other uses of those symbols._ Division is indicated by a slash
(/) because most typewrlters used with computers generally do -
not have the standard division symbol.

More than one arithmetic operation Canwg, combined in a
single LET statement. For instance, the following is a valid

BASIC instruction:

LET A =4 + 6/2

When more than éne arithmetic operation is combined in a
single statement, there is sometimes some confusion about

the meaning. In the example above, should the 4 and 6 be
added to get 10 before'aivid;ng by 2,(in which case the re-
sult is 5), or should the 6 be divided by 2 first and then
added to 4 to get 72 Which comes first, the division or the.
gddition?

Parentheses .-
’ o ‘ \ ’
There gge two ways to solve this problem. The better
way to avoid questions about the order of arithmetic opera-“
tions is to use parentheses .to group sub-expressions together;
then there can be no question:, ‘ .-

LET A = (4 + 6)/2 N

The paréntheses used above indicate quite clearly that the
4 and 6 must be added before they are divided by 2. Paren-
theses always indicate that the expre551on contalned within'
them ‘is to be evaluated and replaced by a 51ng1e number.
Parentheses also can be used within parentheses to in-
>dicate the order of evaluation of an expression. For instange;

’ r
.

MO-06/Page 21

‘necessary. .For instance, 'in the expression

Ve
the expfession . T N\
- R=(4/(7 -5) +3)*6 ’

will be evaluate& in the following steps:

R=(4/2 +3) * 6

/ =(2+3) *6. ‘
=5*6 .
R = 30.

<

Parentheses can be used-even when they are not absolutely

4

LET S = (3 + 7)

* the parentheses are not needed at all. However, their use does
not lead to an error. Thére are situations when a programmer

may not know whether or not parentheses are required; but be-

f cause no larm is dope when they are used when not needed, o
_the programmer would be well-advised to include them when in

doubt.

Precedence Rules

A second way to resolve the ques ion of which’ operatlon,
-is performed first involves using the rules of precedehce "In

_BASIC, *411 powers ang roots and multiplications and divisions

are performed before any additions og“subt}actions. Therefore,
in @ given instruction,.all divisions are ddone first, then ‘

»multiplications, then subtractions, and finally, additions.

If this is as the programmer intends, then no-parentheses are

[}

required.

>

‘ EXAMPLE 'C: PRECEDENCE OF OPERATIONS.

Given: The expressiom L-= 3/5 - 7 + 2 * 3.
. N » /
Find: - The' value for L %

.Solution: The compdter will evaluate the expre551on in the
following four steps, starting with d1v1slon

&

7 L =20.6-7+2%3 . !

, =0.6-7+6
p ' = -6.4 + 6
L=-0.4) .
PRINTING
!' ﬂ . ‘ B \) /\

~ Once a lengthy computation has been perfdrned, the pro-
grammer-often wants tq print out the result. -#iis can be
done with a 'PRINT command. For instance, the pair of com-

mands N) . R

S=7 -~ ..
'PRINT §° .. .
results in ‘7 being-displayed. .

The value -of more than one variable ¢an be displayed
with a 51ng1e PRINT command as long- as-the. .variables are.
separated by commas. For example, the following thrcc con-
mands result in the numbers 6 and 10 being nrintedr

T =6
- . R=T+4 .
. ' "PRINT T, R .

The PRINT command is so common that this BASIC interpretef
. gives ¥t an abbreviation¥— the colon (:). As far as, BASIC -~
is concerned . the colon is equ1va1ent to thé PRINT command

-

’ - SO . . MO-06/Page 23

. - 20

®

s

~N.

¥

-when it appears as the first charactbr in an instruction. As

e a result,- thp follow1ng two ;nstrgctions are identical:,
-) - PRINT-A, B
' - D A, B.
< N ‘
: . » Any expre551on can appear aftef a PRINT command; it does not
< have to be ‘a 51mp1e variable.. For instance, ‘the command :
‘ . . .
, . : 18/0 5
results in printing th”\d1V1alon of 18 by .S, ﬁgmely 36. " The
!
LET “and PRIN% commands, together w1th the arlthm tic operators,
perform a\iﬁ;:e calculations.of thé hand calculator. In many , .
respects,,BA C is more convenient than a calculatd{ because
complex equatlons can be entere& in a single line w1th parén-
theses, Wthh is 51m11ar to. the way they appear in formulas
‘ \ ".) - . - \\ »- °
“ A EXAMPLE D:. CALCULATOR MODE. = - "ﬁ
. . T = - ' ,
~- given:” . _A+B . : ‘ \
o Y 3¢ -0 -
, " ;- where: A =3.7 " :
: " - B =.19.81 . ‘ . N N
. © \C = 8417 . ' :
° -~ « . ‘ » .]j'—' 74 3—]:_;'
.o Find: ’ thte a BASIC expression .that would calculate and
... - % print the result. - ° ’
Solution: One way requires only, one line: T ;
" CPRINT (3.7 + 19.01)/(3*(8417 - J.31))

14
o
»
r

\ - PROGRAMMING MODE S

v

To this point, each command has been executed as soon,as _
it was typed and "the carriage return key pressed. This is

]
cafled the immediate execution mode. Each command is executed
: : .

Y

immediately after it is entered.

. The computer, however, can be used to store a series of

L}

commands withoqut exétuting"them. Then, when the programmer
is:ready, the entire series can be executed at o§ce4bf typing

.the command RUN. This is called the programming mode. - -

-

LINE NUMBERS

P . .
' Table 4 1#sts three commands related to the programmiq§¥\
mode. In the programminéBmode, the instructions are almdst
‘4 the .same” as the immediate mode instructiens decribed above;

“the only difference is that, in the programming mode, each

instrucfioﬁ is preceded b& a number called a line number.

. The computé% executes the instruction,with the lowest ‘line
number firsti and, unless told- otherwise, continues to execute
‘% “instructions in_the order of the increasing 1if® “humbers.
' For inszénce, o -
4 C 10 MOVE 30 :
has a line nu@Ber of 10 and tells the computer that when it
. executes this line it is to move the turtle 30 units. When ‘H‘
' this,}ine is first typed in, the computer takes no action,
because the instruction is in programming mode. The computer
simply stores this_instruction along with'any others that
., have been entered. When the command RUN is typed in,Afollowed
by'carriage return; th?n ic instructions with line numbers™

-
{

are executed. i ' >

- o MO~06/Page 25

Q oL | ' 204 - oy

TABLE 4., PROGRAMMING-RELATED COMMANDS.

Command Action ?
SCR Remove all stored’commands.
RUN o Execute stored commands.
INPUT variable <« . Request a value for the variable from
. the user. .

v

-

The command SCR is an abbreviation for SCRatch'(or remove)

any old program steps which may be left over from previous work.
The series of commands

o
\
T

. S 10 HOME ‘ 4
20 MOVE 20 e
- S RUN ‘ ‘
causes the following action:
."+ The SCR removes any old commands from memory.
:\Then the two numbered instructions are entered into mem-
ory, but not executed
+ Then when the command RUN is typed in, the computer causes
- " the turtiy to go”to ~its HOME position and draw a line 20 ,
unlts long. . : I .
If RUN were typéd agaln the turtle aga1n would go home)
* .,nd draw a line . - -

Notice that the line numbers do not have %o start with 1,

» and not all the line numbers have to be used. The first- instruc-
K _ tion in\ this’ small program h&s line number 10, and the second :'3
has 11ne number 20 It 1§\gpod programmlng practlce to leawve '
| many unused line numbers between 1nstruct10nsf then when errors o/

i . are found additional steps can be 1nserted \\, e “‘i / o
7 . Instructions may be inserted by giving the new, steps line . .
| numbers between ex1st1ng lines. For 1nstance, if it.were neces-
3 sary in the program above 66 TURN 60 before the MOVE instructlon,

|

. ' Page 26/MO-06 . . ,) . |

S
this could be&\accomplished by typing this ‘in the line later .
as follows: , ’
"15 TURN 60 1 V Y
Then whén the program is run® the first line number 10 would
T _ be execp‘éd, then number 15, then number 20.¢, -
The advantage ¢ rogram is that the same procedure
an be followed time and time again. When this ié combined -
ith the idea of variable 7 then th same procedure can’ be
‘Y " fised with different values. _The .shoyrt program below draws a
. ./ square with sides of length L:
] 10"MOVE L
- - 20 TURN 90
) ' 30 MOVE L
. ¢0 TURN 90 A
50 MOVE L : . f
: " 60 TURN 90 | _
70 MOVE L = v ¢y
. 80 TURN 90 !
As soon as the value for L is given and the program istrmi, ~
%, a square will be drawn @n the screen. For instance, to draw
a square.df size 5, one would type the following:)
. L 3L=5 _
. f RUN ‘ .
* To draw another square of size 10, one‘would'typg the follbw- N
ing: ’ , -
5L =10
‘ RUN

£

. MO-06/Page 27

206

A%

~ .
s

tion can be accomplished with the command LIST. When LIST is

\./ .t . .
typed, the computer responds by 1isting all the program steps
currently in memory. If the program is exceptionally long,
it may be desirable to list just part of the program. For
example, the command LIST 30 lists only those instructions

after number 30, and the command LIST 70-90 lists only -those
instructions beginning with line 70 through line 90.

INPUT . - ,

’ : Y

A better way to get values into a program such as the
previous example is to use -the INPUT command. The command

5 INPUT "Give the size of the square"; L

requests the user to give the value for L, the lengfh of a
square. h this command in the program when the program

15 run, the program types out,

,
RS

)

.

G1ve the size of the square o

and thén waits until a number and a carriage return is typed.
There are three formats for an input command:

INPUT'yariable
INPUT variable, variable...., variable
INPUT prompt, .variable,...., variable

The first waits for a sinéle variable. The user is informed
that the program needs a value for a variable because a ques-
tion mark is typed oyt. In the second form, values for several
Varlables are requested, each separated by commas or semicolons.
Again, question marks are typed out to re&%est those numbers.
The question marks can be c%nfu51ng because they give no

indication gs to what values aYe needed; therefore it is clearer

to type ‘a message, called a promgt.tFThe prompt is any message

{ > -
. «

Page 28/M0-06

T . 207

enclosed in quo;e%.- When the program is executed by a RUN
command, the computer types the prompt ahead of the question

mark.
N L
’ - ‘EXAMPLE E: INTEREST RATES.
Given: " The following program:
10 INPUT "Give the interest rate (in percent)"; I
- , .20 INPUT "Give the amount invested"; P s
30 P = P*(1 + 0.01*I). ’
40 PRINT "At the end of a year the investment is
i worth'"; P C
% :
.Fiqd;) Describe what happens when this program is run.

Solution: The first line requests the interest rate. When
the user enters some number, its value is stored
as I. The §eéond line requests the principai
and stores it-as P, The third lime calculates
the value of the principal.after one year. is
value is equal to P*(1 + 0.01*I). The fourth
line prints this answer with a message. One new
) item introduced to this progrém is the use of

’ quotations within the PRINT command. As can be
. ‘ seen, this leads to, a much clearer output. . Each
. <:7 . time it is executed,” the program prints out the
message, as well as the accumulated principal P.

[

J

SCIENTIFIC NOTATION ' S\ ~
When fhe principal is large, the interest rate prdgram»

(Example E) sometimes generates output that looks like the
) ‘ 4 .
.- follewing: . -

o 208 - o

. T MO-06/Page 29

————.

!
!

0.31445E7 -

This is a floating-point number that uses scientific notation.
BASIC uses floating point whenever it must deal with very large
or very small numbers. ~

To interpret a floating-point number, find the E (which
is an abbreviation for "Exponential"). The number before the
E is called the mantissa. The number. after the E is the
exponent. The value of a floating-point number- is the mantissa
times 10 raised to the exponent power. Symbolically, it'is
as follows:

mantissa E, exponent = mantissa X 10&xponent

-

For example, the floating-point number above gives the following:

0.31745E7 = 0 31745 x 107 = 3,174,500

The expeneﬁt has the effect of moving (or floatlng) the
decimal point to -the rlght a number of digits equal to its
value. If the exponent is negative, the decimal point moves

o oy ™

left. s
Other floatlng p01nts numbers are evaluated in the example
that follows. ; ' ‘

BXAMPLB F: FLOATING POINT NUMBERS.

Given: A = -0.7341E17 P
, B = 0.21438E-10 ‘ S .
- " C = -0.10074E-7 S
Find: The decimal value of A, B and C.:)
' = -0.7341 x.1017 = -73,410,000,000,000,000

Solution: A
" B =0.21438 x I0-'°% = 0.000000000021438 .
C = -0.1007 x 10°7 = -0.00000001007

f

]

209

.
-

¢
|

falhd

LOOPING

<

L4
*

.Instructions discussed so far\a;e quite powerful. They
permit shapes tp be drawn on the screen-and computations to
be performed with 1ightning speed. "However, to this point,
every instruction given could be executed only once each
time a program is run. If this’were_tHe onlly possible way
to program, then programs that are complex would become quite
long. Consider,-for instance, the difficulty of drawing a
“circle. A circle can be drawn by a seriés of small MOVE and
TURN commands. If the sequence MOVE 1, TURN 3 were repeated
120 times, the turtle would draw a figure that would look al-
most like a pgrfect circle; however, no one would wish to
tYﬁe in these<two commands 120 times. BASIC provides two
ways of -repetitively eieqﬁfing one or-more command$ like
these, as showﬁ in Table 5.

TABLE 5. ~ LOOPING COMMANDS. ‘ .

Instruction -~ ' Action

GOTO N \ The next instruction is at line
: ’ number N. N can be a number or any
valid BASIC expression. »

FOR I = J TO K . The beginning of the range of a FOR,
b ~ NEXT loop. The index I can be any

| ¢ . : variable. J ,and K can be any numbers
: ‘ ' or valid BASIC expressionms.

E

NEXT-I .1 . Marks the end of the Tange of the
SRR FOR, NEXT loop with'the-‘index I. -

B .
v

< .

" N

‘»‘,‘,,_J 1

MO-06/Page 31

e d

THE GOTO COMMAND-

. The simplest way to loop is to use the GOTO N commtand.
When a GOTO N command is executed, the next instruction executed

is the one with line number N. For instance, a circle could be

drawn with the following three instructions: .
, 10 MOVE 1
N co 20 TURN 3
< : : 30.GOTO 10
< :

\ &hen,'when the RUN command is given, the computer would
repeat endlessly the TURN and MOVE commands; and as a result,
a circle would be drawn after 120 repetitions. There is ‘
nothing in this program to stop the computer dafter a complete.
circle; so it will continue redraw1ng the circle.

- There is a problem wikth the preceding example in that
the computer gets "hung up" endlessly going around the 3- line
loop. The only way to stop the computer when it is trapped 0
'in a loop of this kind is to press the .CONTROL key and the

.C key s1mu1taneous1y to enter a special command called)
CONTROL C; th1s stops or "breaks" the executlon-of the program.

1

~Loops - . - -
) . i : . .) . N
To avoid.getting trapped inside the Toop, it wéuld be &
better to execute the two commands exactly 152 times; this '§§
———— ~——cambe-done with the FOR and NEXT commands. ‘FOR and NEXT
. are two instructions that must be used togerher. (If one is
used the other must ‘be used.)- When they are separated in
a program, all the instructions’ between can be repeated.

The part of the program that mlght be executed between the

L

S

FOR and NEXT instructions is called tHeinange. < ‘
;o0 Y ¥

Page 32/MO-06 - ' ,

The number of times instructions in the range of a FOR,
“®NEXT pair are repeated depends on more information in the
FOR instruction. This is illustrated in the following program:

10 FOR I = 1 to 120 .

20 MOVE 1 '

30 TURN 3
. 40 NEXT I

1\
[l

In this program, the instructions for lines 20 and 30 are °
executed 120 times. - Each time they. are _executed is called

an iteration. The first time through the loop the variable

I is set to 1; the second time, 2; and sp\forth.' Each time
through the loop the variablé is increased by 1,and the
process is g¢ontinued until I takes on the last value —_in
this case 120. After the last time through the loop with

I = 120, any instruction following the loop would be executed.
In this particular case there are none, and the program stops.

The NEXT instruction marks the end of the range. The'

variable I could have been any other variable, but the same
"Varlable qust be in both the FOR and NEXT instguctions. Thi;

\
varlable is called an index.

-

The variable following the word "FOR" is the index. The
index is first given the value of the expreésion to the right

_of ‘the equal sign. Then, each time through the loop, the \\\'

=-index 1is increased _by one., This process continues until the
~ value of the 1ndex exceeds the value oﬁ\the expression after

the word "TO". For instanée, the loop -that starts
)

" FORK = 7703 %6

2

~would start with K = 7 and repeat until K = 18. The loop with

K = 18 would be executed, but not oné with K 19, . .
In the example above, the index I is not used anywhere

in the program except to 'count the number of loops. However,

- N »

MO-06/Page 33

‘

e

41 ‘. d) -
.. . 5 . -
this_yariable is available to the program and could be used
v to great. advantage in many situations. The program in Table 6,

for .example, calculates the value of an investment made today

‘ after a given number of/yéars at a given rate of return. The
4 :
, index is N and i-s used rn‘fﬁ“‘brlntout .
e y
, TABLE 6. THE INVEST PROGRAM. -

10 INPUT "Give theWintenesg rate (in percgent):"; I .

: 20 INPUT "Give the amount invested"; P

30 INPUT "For how many ‘years do ‘you,want to 1nvest?" Y
40 FOR N = 1 to Y ‘ N

504 = PX(1 + .01*I) .

] 60 PRINf‘"After"; N; "wears, the principle is worth"; P

i | . 60 NEXT N - L N

-~ In line Sd ' the prégf%m asks'for the number of years the X
-investment 1s to be made and stores the value giwven 1n Y. i
Because Y is in the FOR instruction, "the program nepeats the \
51mp1e interest calculatlon that pumber of’times. It does
this. by looplng through the calculation once for each year

_that the money will be‘'invested. When the program is runm,

.the results can be seen as Flgure 7. . .
-
) - ‘. ~ - —
. e S .
- . . >
’
L 4

%

Page 34/M0-06 .. =~ 213 ,

[t4

< e, . ¢

P
- 0}
s

v “ ') ’ - *
(Comﬂlter s- request a
GIVE IHE INTEREST RATE (IN® PERCENT)) - -

. L3
‘ <
-GIVE THE AMOlfNT INVESTED 100 '

FOR HOW MANY YEARS DO YOU WANT TO INVEST? 10

» a

AETER 1 YEAR, THE PRINCIPLE IS WeRTH 112 - ’

AFTER Z'YEARS:;TﬂE PRINCIPLE IS WORTH 125,44
™ "\ ~ - 'o
LA A o &
s ¢ L .
v .

©
.

AFTER 10 YEARS, THE PRINCIPLE IS WORTH 310.58

-|Given: . The follow1ng pzrogram

Figure 7. " One Run of the Investment- Progranm, INVEST.

. ~ -
Combined’ with the prev1ous instructions, the- FOR NEXT pa1r ‘

can generate some- -extremely sophlstlcate& programs. One .

. powerful idea is to place one. FOR, NEXT pair inside the range

of another pair. This is called nesting. Nesting is possible
as long as the indices for the two FOR, NEXT pairs ‘are
different.) ._"‘i‘ o ‘ 3 D |

\:' , J»-‘/ . ‘) ,s' .

.o { i o -

1

EXAMPLE G: NESTED LOOPS -

. 10’\, HOME ' 46 '“:- . N 3 o M ') 0
. 20 PEN DOWN ' : ’
30 FOR.I-= 1 TO 10 - - .

40 HOP 15 °
50 FORJ £ 1 TO 4

L

S L

{; -
/v"“&}
"—\‘ >
. g_,':" .
L]
>
"2
Y

e

S —/

- -

»

- Example G. Continued. .

, 60 MOVE 10 =
- o 70 TURN 90 . .
SR 80 NEXT J ’
" *90 NEXT I) : - ’
, 100 END ; ‘

Find: The shapes drawn on the screen. . . ¢
Soﬁution: The inner loop consists of lines 50, 60, 70 and

80. —n each of these loops, one line is drawn
2 \ and the turtle is turned 90°. Repeating this
' four times draws a square.. The outer loop extends i
from lines 30 to 90. Each time through this-loop,
-1 ' the turtle, hops forward 15 and\E?HWs a square, (by?
- executing the inner 1oopj. ‘By.repeaxiﬁg fﬁis

- ' ten times, 10 squargs are drawn in a row.

LAY

Note the END instruction at line 100. A-good practice is |
_to include this §tatemeht at the end of each program, as it .
definitely f%lls the computer to stop at the end of the program.
"X " If there were a higher line number with instractions still
\xé .;ngiiﬁ?fé_ffgf,? previous program, the tompggpr would proceed- ,
- andpexecute that ?6mmand were it 70t for EN%.

I4

N - ..

-

1%

s DISK CONEROL

Once a ﬁrogTam'has been developed and run B;operly, it

is useful/to be able te-,store it for later,use. This requires

‘< the disk’cont;ol‘commands listed in Table 7.

-

~ .

>4

TABLE 7. DISK CONTROL COMMANDS. . .

Instruction) : ‘ Action - } A

NAME P Computer gives the name P.to the current| -
. program. P can be any va11d {rogram
c—t name. N

‘SAVE) ’ Save the current program, u51ng the

current program name.
ord Requests a program to be loaded in from

the disk. %
DIR *.BSC Lists_all BASIC programs on the disk.
ERA P.BSC , Erases the BASIC program P. The name P

* F .
. Computen responds w1th thezcurrent

. program name.
o -

NAME

can be any valid program name.

“When a program is used at a later date, it is referred
to by name; therefore, before the program.is saved, 1 ust{:
N,

be given a name. Anytime BASIC is begun, it asks the quest

NEW OR OLD?

7

An old program is one that is already stored in disk; Qhereas ‘
a new program}ié one that will'be genérated,,using BASIC, 1In ~
either case, thqiname of the program‘is réquested . When\the
name of an old program is given, the program will be brought
in from memory. If it is a new program, it is up to the
programmef—to invent a name for ;hat progﬁ?% The name qf \

a program must start with some letter and-be not more than

\\

is a valid name for a program,but 3PRG is not, nor is MY PRG..

‘s >
_ ' . ' . /J

seven characters lohg and have no spaces. MYPRG (my program)

-

" program with that name. If such a program exists jon the current

“As soon as this is given, the disk will be searched for a

_ Any valid i program name ‘can be dsed. The ".BSC" in the two ‘ -

) - - .] .

. e). :
) ,

/\ 7 .

. ‘f
To-find oé;“zﬁe'name ef the current program, the command
NAME can be typed in at any time. The computer responds by
) - .
typing the current name of the program. To change the name //

of the program, NAME is typed, followed by the new name of
the program. - Thus, the typing of . : ‘ 3

- ‘ ' NAME JIM. - g)

calises the current nam€ for the program to be JIM
To save a: :program, .simply type" ‘the command 'SAVE. This
causes the computer to save all the instructions with line .
numbers on a disk using the current program name. If the
disk already has a program, wlxh)that e, the old program
is lost +and the new one written over it. To retrieve a
program from disk, the command OLD can be typed at any cime
The computer will respond by requesting the name, of the program

A X
disk, it will be loaded in and made available. Any program

previouslyfmmemory will be 1lost. ’
Sometimes it is useful to see what programs are on the*
disk. This can be done with the following command

DIR *.BSC ' -

~

If there are programs that should be erased from disi:athe

»

» »

command

Py
—~—

- ERA P.BSC S - s

N

can be used. As writtén this erases the program name P.

commands’ above 1nforms the computer that only BASIC programs
are of - 1ncerest This. is actually part of the name of any ‘

o

Page 38/MO-06 -

BA§IC program and is supplled automatlcally by BASIC.

—-.; 7 Thls can be_seea‘when”fﬁ‘“tommand NAME .is used ‘because the
".BSC™ is %wturned with the program name. ~ —_
~) 3 e . . ‘ v
. J
EXAMPLE H-' SAVING AND USING PROGRAMS ON DISK. <+ |
Given: The ptrogram STAR which resides on dlSk
~' ~ [|Find: _ The steps necessary to add the line 30 TURN 142
\
RUE to the*grogram then rename the progradm STARS
- and save it 'on the disk. ’ :
Solution: The command i ,
OLD STAR’ ‘
0 . f' gets the program stoered in" the computerv Then
’ * the new line can be added by typing the following:
30 TURN-144
The program .can Be»qéﬁamgd using the following
‘ command : '
“ . * NAME STARS ‘ -
’) This program can be saved under its new name by
¢ . typing the command T
SAVE N

2,
s S
o

*

N

- 1 M = > 4 i
: .] kS
. B C ;. EXERCISES
1. Describe the figure drawn by the following programs. .
, a. 10 HOME . 2 ‘ . . '
. 20 MOVE 10 ‘ ' |
‘o 30 TURN 120 "

40 MOV
N {E - ’ P . .
- 20 TURN 120 R .
30 MOVE 20 a s
40 GOTO 20 |
c. 10 HOME '
20 MOVE 2 5 D
2" 30 PEN UP
40 MOVE 2 =
| 5¢ DOT
; . 60 MOVE 2
T 70 PEN DOWN
' 80 GOTO 2
d. 10 FOR I = 1 TO 20
20 MQVE.I
. " 30 TURN 60 |
__‘ """“r*-&»\“ 40 NEXT I | §
- e. 10 PEN-UP |
20 FOR X = 50-TO 50
30 FdR Y = 50 TO 50
40 JUMP TO X,Y. '
50 DOT
60 NEXT Y
70 NEXT X

Fad

¢

) K ..
.) . MO-06/Page 41

o e 219

2. Describe the results of running the following programs:
- a. .10 PRINT "PLEBASE ENTER A NUMBER''
20 INPUT A ‘
30 PRINT A*(A + 1) -
T I0 T T —
b. .10 A = 3E7 . E
" 20 B = 0.1E-2 ' .
30 D = A/B*4-3 , { :
40 PRINT A,B,D ' g
3. Write a program that does the following:

a. Draws a triangle wi?h 3 equal sideixf

b. Draws two touching circles. R,

c. Requests two number€’and prints their product.
d.'s Requests a number and draws a grid that fills the

screen with that many horizontal and vertical lines.

LABORATORY MATERIALS

P 3
s

A disk-based microdompg;;r‘with CP/M and BASEQ.

1 full-size floppy disk. el

1 Metric ruler. - v v
1 Protractor. N

LABORATORY PROCEDURES

LABORATORY 1: GRAPHICS.
1. . Read BASIC into the computer. Apply powér to the comphter.
Place the disk in the disk reader. Press the RESET button.
Type BASIC <ret> to read BASIC from the disk. Name the
program as requested.

-

Page 42/M0-06 -

A\ d

i

Figure 8. A Pentagon Used in Laboratory 1.

Y

4

Recreate the pentagon depicted in Figure 8 on the TV,
using MOVE and TURN instructions. Several ways have been

outlined that could be used to create a line drawing.
using the TV; the easiest is to type a series of MOVE

and TURN commands in immediate mode. Measure the angles
- and distance in Figure 8. Translate these into immediate
mode MOVE and TURN commands. Enter the commands in Data
Table 1, under Step 2. Fnter these commands on the com-
puter. Make any corréc;ions necessary, and record the
successful commands.

Create the pentagon in Figure 8, using JUMP.TQO commands.
Figure 8 -has been drawn on a grid to simplify finding the
coordinates of the ends &f the straight lines. Determine
these coordinates, and use them to draw the fighre with
JUMP TO .commands. Record in Data Table 1. Enter these
commands on the computer. Make any corrections neces-

sary, and record the successful instructions.

-

s
MO-06/Page .43

4, Create the pentagon in Figure 8, using looping. The five

angles and five sides in Figure 8 are all the' same; there-

- fore, instead of five identical MOVE and five identical
TURN commands, only one of each is needed in a loop that
is repeated five times. Write a program that accomplishes
this, using the GOTO command, and record 1n Data Table 1,

¢ : ‘ . Step 4. _Enter andfmun program. Use CTL-C (press CONTROL

: and C keys togethe})'to stop the program. Record the

successfuf‘program Modify the program, using the FOR, "

NEXT pa1r SO thathjust the five sides are drawn. Enter,

T run and record thﬂs program. NOTE: If a mistake.is made
» enterlng an instruction, any of the following three steps
can be taken to correct the error:
a. Cancel (erase) the entire line by pre551ng CTL-U :
(CONTROL and U keys). ‘
b. Delete the last character by pressing the DELETE key.
. c. Retype the line.
S. Enter a Qolygon draw1qgﬁprggram. The program below asks ’
. .for the number of sides desired.and then draws a polygon
with that many sides:
10 ERASE)
A 20 SCROLL OFF . ‘
bs 30 INPUT "GIVE THE NUMBER OF SIDES" N '
—~ 40 PEN UP
' 50 HOME .
' 60 JUMP 'TO 0, -50
i 70 PEN DOWN
*. " "80 MOVE 150/N " /
90 FOR I =1 TO N~ . . .
S 100 TURN 360/N
’ . 110 MOVE 300/N
l', ?3 : '120 NEXT I .

- -~
]

Page 44/MO-06

. - <22

R

Enter this program, name it POLY, save it and run it

for’the following number of sides:. 3, 5, 17, 100.
Describe the results in Data Table 1, Step 5.
JImprove POLY. POLY is inefficient as written because

two unnecessary divisions (in Steps 100 and 110) are
required each time through the loop. These divisions
should be done once before the FOR instruction and the
results stored in new variables. Make these changes
and repame the program POLYl and save it. oTime'both
POLY and POLY1l, drawing a 100-sided polygon. -How much
time was saved by eliminating 200 divisions? Determine
from this how long ene division takes. Record the
estimate and the changes in the program.
Modify FIELD. Enter, save and execute the following
prograﬁ called FIELD:
" 10 HOME .

20 ERASE Y

30 FOR X -6 TO 5

40 FOR Y -4 TO 4

SO“PEN UP)

60 JUMP TO 19*X, 10%*Y

70 PEN DOWN)

80 FOR I = 1 TO 5

90 MOVE 7

100 TURN 144

110 NEXT I

120 NEXT Y .

130 NEXT<X . ')

—

Describe the TV display that FIELD'genefates. Modify .
FIELD to draw squares instead of stars. Rename this
brogram SQF and save it. Record the changes required.
ModifyﬁfiﬁLD to draw the jet in Figure 3 instead of stars.
Rename this.program JETF and save ‘it.

L4

’

' LABORATORY 2: COMPUTATIONS.

14 " Use the calculatbé mode to evaluate expressions. Load
SIC into the computer and use it to evaluate algebraic
xpbesSions in its calculator mode. Use A = 0.3, B =

0.000017, C = 340,700,000, and D = 0.3f315. Calculate

« . and record the’reéults in Data Table 2. ' i

a. 74+35+64
20D

L

. '
B.ﬁf A (3B + 8 ’ T
b . v
% 5C -3
) A
B+ 30p -
ABC *-
d-‘ -"D—"' . i . . N
2. Efiter INVEST. a;g;gf and execute the investment program
" in Table 6. Nafie it INVEST and save it under that name.

Use it to’éalculape the term value of $1000 invested at
5% after 25 years. Use the program to decide whether
twice the interest rate doubles, the interest earned.
Record the' results in Data-Table 2, Step 2.
3. Modify INVEST. IﬁVEST prints out the prﬁnciple.value
after each year. Suppose all that information is’ not
needed; only the final value. Modify the program to omit \
all the intermediate printing. Rename the program INVEST1
and save it. Record "the changes required.
4. Calculate thg_-heat flow through a wall. The amount of
heat lost through a wall depends on the following:
« a. The thicknéss, T, of the wall in meters.:
b. The height, H, and length, L, of_ghe wall in meters.
c. The temperature difference, D, between the inside
» © and outside of the wall in dégrees Celcius.
. d. How w%%I the wall conducts, measured as i;s specific .

- ES

: conductivity C. , °
The value of Q, the heat lost in watts, is as follows:
- & v o

Page 46/M0-06

P

cep !

. Q=T
Typical values for the specific conductivity are given
in Table 8. l _
F e —
- *
. b ’
TABLE 8. SPECIFIC CONDUCTIVITIES.
| uteaa SPECIEIC Conpuerivny ¢)
WOOD (Pine) 0.11
o GLASS 0.7 — 0.9
-CONCRETE 1.3 — 3.6 r
' GLASS WOOL N X
INSULATION 0.04
Sl | §TONE (Granite) ’ 1.9 — 4.0 N
[
‘ﬁrite and save a program, called COND, that requests %
input values for each of the five variables and then
prints the resulting heat loss. Use COND to find the
heat lost through a wood wall 3m high, 10m long, and
0.2m chcfk\when it _J:.S, 25°C inside and 0°C outside.
‘ '+ Repeat the calculation for concrete and glass wool _
y " insulation. Record the results.
\ .
>
. v .
) -
. ‘ PR
R - MO-06/Page 47 '

RIC.— B s
' . k\\~ o ~ .

DATA TABLES ' ’ . ;

DATA TABLE 1: GRAPHICS.

STEP 2; MOVE AND TURN ,INSTRUCTIONS
Immediate mode commands used to reCreate'?igur6“8r
v :
\' - A) -
STEP 3: JUMP TO COMMANDS .
4 Immediate mode JUMP TO commands used to recreate Figure 8:
L —
. /
$
STEP.4: LOOPING . o
Program using GOTO that recreates Figure 8: -
>
- »

Page 48/MO-06

co - 226

. . . N

‘Daia Table 1. Continued.

. STEP 5:¢ PROGRAM USING A FOR, NEXT PAIR TO ﬁECREATE EJGURE 8:
- ° . -

-

Describe the rgsults:

N

A
.
r

. «

| STEP 6: IMPROVE POLY S o -
Estimated time per division: _ - , - ' l
—=€hanged lines in POLY: . B
e .) . o
'STEP 7: FIELD' . '
Describe the display FIELD generate§<\ L r
o -) «)

, . Chariges required to generate squares:

-

227 S

A

Ly

DATA TABLE 2: COMPUTATIONS.-

STEP 1:. CALCULATOR MODE " .
~m_._“,w__.,__g___a_&a,sn\ltsxof calculatlons L s o

M . . R
.
o ' .
. 2

r:i-no‘m

STEP 2: INVEST- .
Values of $1, 000 after 25 years at 5°'
Amount ‘gained: . -
Value of $1,000 after 25 years ét/lO%{

Amount gained:

<

STEP 3: INVEST MODIFICATIONS « ", - *"‘\\\\\‘;

Changes required to print only the final principle:

4 A 4
- . '
-

/ﬂ) | . . - -
STEP 4: HEAT FLOW ' -
Record the program, COND: < °

-

.S

«

ERIC

Aruitoxt provided by Eic:
o -

IS

-
.

bata Table 2. Continuéd.' ' . l{/:

u Heat loss through — .

a.’ Wood: ‘watts . L.

\ i
b. Glass: Watts’
, c. Concrete:

. watts

d. - Glass wbé%'insulatio 4 . . watts

e. Stone;/ ' watts
\ . .
. “) = \) \ J *

- \
- . \
- . t
\
\
s
<
.
4w
> ‘ \ [y
- « " ~
. . .
.
. - -
. . .
- \
s \
\
\
N s
\
\ .
. \ "
|
A ~
' . "
. " .
. * .. ———— . .
B N [&0 e \
- .
. -« . .~ P ¢
.
. - . * .
’
. .
. \ AN
-
" - .,
‘
. :
. - -~
\ .
' Vo
. \ .
' .r -0
L J N .,
. .
’
-

MQ-06/Page 51

\
o

i

. . E

‘.‘r: .) - \

¢ 1]
. REFERENCES
Al
Albrecht, Bob; Finkelf Léioy;band Brown, Jerald R. BASIC for
Home Computers. New York: John Wiley § Sbns, Inc., 1978.
BASIC User's Manual, TERC.)
BASIC and the Personal Cq_puter Read-

Dwyer and Critchfield.

A 4

ing, MA:

Addlson:Wesley Publlshlng Company, 1979.

R

(84

-

«

,"RGY, TEC “HNDI:DGY

QQNSERVATLON AND USE

INTRODUCTION

[

3

This module introduces a 'number of programming concepts

module in this series is an introduction to BASIC programming
which describes a core set of BASIC instructions. Many pro-

" blems can be soiyed with programs using just those instrué- .
tions; however, this module will show h@at there are problems

IS

th?t are either 'very d1ff1cu1t or 1mp0551b1e to program with-»>
out the aid of some addltlonal instructions and programm}ng
technlques. Y
This module introduces conditional statements, functions,
AR . .
subroutines, indexing, and arrays; and it shows how these

, ideas can be applkied to specific calculations.

M

I . PREREQUISITES

.that make BASIC a powerful and usgfpl language. The previous

—— - o

, N S
(S} . . .
The student should have completed Modules MO-01 thrdhgh o
MO-06 of Microcomputer Operations. Co- ‘
L s o ’ - *

OBJECTIVES

L

;o

Upon completion of thls module, the student should be-
able to: 1 - _
1. Define the sctlon(of the f0110w1ng commands :

a. DIM ™ ~

b. IF .
r.c. GOSUB . . . \
d.. RETURN :) _

MO-Q}/Pégq 1

° 4 2329
e N ’ PR
, o : \

.

-~

-,] .
e. DATA . ' ‘
) £. - REM ' - ,
g. STOP ' SR
h. APPEND ° e |
i. READ : N ha
j. DATA . ’

2. Define an indexed variable; describe how ‘to access and alter
its contents. , ‘ '
3. Define functions and subroutines; and describe the action

¢

of the following functions:

a. ABS -
) b. INT
c. RND
d. SGN ' .) :
: e. SIN ' : :

Lo f. TAN S S
g. CoS &g
h. SQR .

- 4. Determine the action caused by prggrams that use the com-

.

mands listed above, indexed variables and the functions
listed above. . -
S. Write short programs using these commands and datagstruc-

* -
tures. . .

-

6. Analyze the computer resources required for gpmputation

and graphing. .

o

233

S e mma @ & e e ot e e e e e e e v e pr————

"SUBJECT MATTER

i

CONDITI;;&L STATEMENTS

-

-~

There are many sifuations in programming where one part

" ~of the program can usually bérexecuted, but under certain
cgnditioﬁs another programgggcg*is needed. Tﬁis"is called
branching; that is, the program must go one of two possible

ways, depending on the result of some calculation or input.
The IF...THEN statement is an instruction in BASIC that

pefﬁitg branching. A typicé1§use is shown below:

N

300 IF N =7 THEN Y =

This statement gives Y a\nqw value - namely 8 - only in the
case where N = 7. If N does not equal 7, Y is unchanged.
Another exéhple follows:

-

S
10 IF R > 3 THEN GOTO 400

In this case, if R is greater than 3 (e.g., 700 or 3.001),
then the next instruction to 'be exécuted will be at line
number 400. On the other hand, the GOTO statement will be
ignored if R is equal to or less than 3 (e.g., 0, -5,00001
3). In this case, the next instruction will be the one fol-
lowing the IF...THEN statement.L

A

PARTS OF THE IF INSTRUCTION

There are four parts to the IF...THEN instruction.

'MO-07/Page 3

= "These are illustrated in the complete'IR statement below:

1 2 3 ﬁ.
IF conditional THEN branch instruction

The first part is the IF word itself; this is absolutely
Tequired. The°se60nd part is called a conditional statement,
which, in most simple cases, will involve comparing two
expressions with some relational operation. In the latter
example .given,” R and 3 were coﬁpared with' a relational opera-
tion >. The result of a conditional expression is always
either true or false. In the example, either R is greap8r
than 3 or it is not; in the first éxample, either N wés equal
td? 7 or it is not. If the condition were true, theh the*
bragch instruction is executed.

. The seven kinds of relational operations allowed in BASIC
conditional expressions are 1is§ed in Table 1

TABLE 1. RELATIONAL OPERATIONS.

Relation) Meaning
> Greater than.)
- < Less than. ,
= Equal to
>= Greater than or equal to
) <= Less than'or equal to
<> } Not equai to. ,

The third part of the IF statement is the word THEN. The-\
primary purpose in typing the word THEN is to mark the end of

‘the conditional statement, as well as to make the instruction -
. ’ 6

Page—4#MO-07 ‘ .

readable. \ . .

After THEN comes the fourth part of the IF statement, the
branch instruction. The'branch instruction can be.any valid
BASIC instruction. ' It is only executed if the result of the
cond1t10na1 express1on is true. If the result of the cqfdi-
' t1ona1 express1on is false,- then the branch instruction
1gnored and the computer executes the next instruction.

There are situations in which the calculations needed if
the conditional is true can be done in a single instruction.
In this case, the single instruction can just be the branch
iﬁstrﬁctionﬁwithin the IF statement. There are many situa-
tions, howeve?? in which extensive calculations must be per-
formed if the conditional is true., In this case, a GOTO - N
(Go te) statement can be used for the branch instruction.

The GbTO statement ‘starts the computer executing a
totally different part of the program,whlch may contain a

ﬁi\qf steps. This situation is so often encount-

large numbe
ered ;hat an abbreviation has been developed for BASIC. As
branch 1nst§§ct10n, GOTO 300 and 300 are the same. This is,
the word GOTO may be omitted. If it is omitted, then all
that is required is the line number to jump to if the condi-
tion holds. ’ » ‘)
An example-of the use of the implied GOTO statement 1s
the f9110w1ng instruction:) . ,

I R s

- " 600 IF (X + 7) > Y * Z THEN 200

If the condition holds (i.e., if X +:7:is indeed greater ' -
. than the product of Y times i), then the next instruction
to ber executed will be at line 200. On the other hand, if
the cdndition fails (i.e., if X + 7 is not greater than the
product of Y and Z), then the next instruction will be the
one immediately following line 600.

~

. . MO-07/Page 5

. . N
f‘hqw IF instructions can be used in

’

. Below is an example
a Xomplete program:
10 INPUT "GUE§S MY NUMBER"; G
20 IF G = 31 TNEN 60 .
30 IF G < 31 THEN PRINT "TOO LOW"
40 IF G > 31 THEN PRINT "TOO HIGH"
50 GOTQ 10
60 PRINT "CORRECTH"
70 END

Line 10 requests the user to guess a humber the compute?t is
"thinking of." The guess is stored in the variable G. If
the guess is 31, it is correct; ‘and in this case, line 20
) uses an imblded GOTO.to tranSfer control to line 60. Line
——~4;»v__ﬂnéovprintS~CORREGTLgA%hén—the—programjs%epsf—wif~%he~guess =
was not 31, line 30 checks to find out if the guess was less
than 31. If so, TOO LOW is printed. Similarly, line 40
checks to find out if the guess was greater than 31. In this
“case, TOO HIGH is printed. In either case, line -50 transfers

control to Iine 10, which requests another guess.

o

‘ .

EXAMPLE A: CONDITIONAL EXPRESSIONS.

- Given: The foliowing program: ' .
‘ 101 =1" ' :
20 PR{?T I, 3*%1 -7 .
230 I =1+ 1 -
. ‘. 40 IF I < 5°THEN 20
Find: The output generated by this program when%}t is~
Tun; %'T\nﬁ

|Solution: This program illustrates a way of using conditions

L 3

Page 6/MO-07-
¢)

21377 v

.

e—— = e g —mp = Ao~ 2 ——n

Example A. Continue&.

+ to cause_looping as the FOR, NEXT pair can. I
is set to 1 in line 10, so’ line 20 prints the
following: '

| , 1 -4

Then I is iqcreased,to 2 in. line 30. Since this

is less than 5, line 20 is again executed. This

now prints:

. 2 -1°
iThe-lobp is executed again, printing: N
= 32
and again, giving: '
4 5

. *After printing this, I is increased to 5 in line
SQ/ Then line 40 discovers.I 1is noalonger less
_than 5, so the next instruction is executed. There

are no other instructions, so the program stops.

-
.

INDEXING ’

<

Consider the problem of storing‘'a large amount of data
from a single source,«'Ihese data might represent theﬂtegpera-
s ture at a particular site over several weeks; there might bg
thousands of readings which need to be entered into,the-com:'i
puter and analyzed.
, There is no convenient way - us§ng the BASIC commands
discussed to thig\point - to handle all these data. There
are two things wrong with assignﬁng each reading to a different
vdriable: 1) there might not be enough variables, and 2) a
sepgyrate instruction would have to be written for each dif-
ferekt variable, which could lead to unnéceSs&p@%y long code.

i
O

Y

MO0-07/Page 7

<

N\ 238

.
LS

WPieg

N
. > N . -
.
. .
.
°

The way to solve these problems-is to use an indexed
variable; this is,a variable that c¢an store many different”
numbers. These numbers ,are stoﬂpd in order-and can be accessed
by using an index that 1nd1cates which numbé\\ls desired.

.For instance, "A(3)" means the third number stored in the

vaglable A, and "R(S7§)"-means the 375th number stored as

variable R. Using indexed variables, 10,000 temperature-data
points could -be stored by using one indexed variable. An
indexed variable can be used anywhére a number or a regular

variable can be used. It must always b¥ followed by its index;

which consists ¢f parenfhﬁses around a number or expression.
Thus, T(9) = 4 is a LET statement that assigns 4 to the 9th

‘number in the T variable, and B ='T(9) *3 multiplies the 9th

T number by 3 and stores the result in S. The statement

WEKC—W*Wf o :

- T ' i
Y- IF T(9) > B (1) THEN 30

goes to instruction 30 if thé 9th T is larger than the first B.
The follow1ng states the general form for an 1ndexed var}c
able:

5

.variable (expression)

That is, any valid BASIC variable may be used as a simple vari-
able or as an indexed variable, but its use must be consistent
w1th1n a given pregram. It is recognized as indexed by the
parentheses that immediately follow ;he variable. Any-valid
expression that can be evaluated can be within the parentheses:
a number, a varlagle, or an expre551on Thus,, 29(4), R(A)},
T(B*iql), and R(T(3)-1) can all be vaild indexed variables. 1In
the last example, the index of R is one less than the value of
the third number in T. | '

Page 8/M0-07

¥

DIMENSIONS

s

The BASIC language must save addresses in which to store
an indexed variable; if 300 readings are going to be stored
“in T, BASIC must make room for 300 numbers in memory. <

This allocation of memory is done with a DIM statement.
DIM is an abbreviation for "DIMension." The statement

10 DIM T(300)
4 .]
reserves 300 locations for the indexed variable T. The 300
in this example is thd. dimension of T. Every indexed variable

must be dimensioned, usi a DIM statement, befdre it is used

———-——— —im—a program: -
Once a variable appears in IM statement, it must always
be 1ndexed For instance, A and A(3) cannot be used in a pro-
gramy A is a simple variaple/and A(3) is indexed; the same
variable cannot be bothy ’
The index of a variable must be between 0 and the dimen-
\ sion stated in a DIM statement. For instance, the fOllOWlng
are invalid for T as dimepsioned above: T(- 1), T(1000), a
T(-30), The program in Tgblq 2 illustrates the use of an

o

-

indexed variable.

L 4

£

DATA.

TABLE 2. USE OF INDEXED

10
20
30
40
50
60

80
90
100
110
120

1348

DIM D(1000).
REM ENTER DATA

I1=0
I=I+1

PRINT "ENTER DATA POINT", I
INPUT D(I) - ' .

REM CHECX FOR MORE DATA

INPUT "TYPE § TO ENTER ANOTHER POINT“, S

IF S = 0 THEN 40 \

REM THE CURRENT I IS THE NUMBER OF DATA POINTS
N=1 - '

REM SEARCH FQR THE MAXIMUM
M = -1E64 ’

L "

140
v} 150
160
170
180
190
200

FORI =1 TO N)
IF D(I)'> M THEN M =
NEXT I

REM NORMALIZE DATA BY DIVIDING BY THE MAXIMUM
FORI =1 TO N _

D(I) = D(I)/M . . .
NEXT I |

N\

\

(D)

N The

into the

an abbreviation "

nored by BASIC.
longer programs to cla
+ accomplishes; but, of course, the program will run w1thou§ any

REM statements.
This pragram asks the user to enter up to 1000 data points

Page 10/MO-07.

-

a

ommand REM is introduced in this program. REM is
EMark,' . and is used to insert comments

rogram, t make it readable.
It

what each section of the program

‘R@M commands are ig-
{s good practice to use REM comments with

-

[

‘ N 4 °) ’
that are stored in D. These poinfs are searched for the
largest data point, then all are divided by this largest

value. This process, called normalizing, results in data

that is proportional to the oriiginal data, but all points
are less than or equal to 1. The normalized daté are also
stored in D. This program is not very useful as written - it
» is a logical beginning to a longer program that might perform
additional computations on tﬁe data or graph the results. .

- Dl

—
5 LR . ?
* . »
¥

_ FUNCTIONS

v °

A function is.a‘rule.that relates two variables. One
) éimple rule is '"take the positive sguare.root." This defines
_— - 9.&}he square roqt,function. If this rulegis applied to 9, the
ve - result is 3; thus,” 9 and 3 are related through the square
Seys épat function.. °) '
¥ @'
- FORMAT OF FUNCTIONS ‘
. s a,‘ ‘ .) ,
" BASIC has certain builT™n functions. “"For instande, the
square root functign.is called SQR in BASIC. Tq‘print the
value of the squdre root of 9, type the following command:

i: ’a‘ * '
3. op <o

s

. PRINT SQR(9) ‘ <-

v ° X . == 2 .
e The computeT will respgnd by printing .3. _The general form
_ -of a functioh in jﬁSTC is as follows: o

.
&

. » functionname (expression)

v L4 * . ‘

The functionname- can be any of those listed in-Table 3. The

@+ .

[t
]

MO-07/Page 11

>

expression is called.the argument of the function; it can be

any valid BASIC expressirn that can be evaluated to. g1ve a

number

~

When BASIC encounters a function, it evaluates the func-

tion and replac

es it with a number.- For instance, SQR(9) be-

‘comes 3. This _numbef is called the value of the function.

This value can be used anywhere that a number or expression is

C. Some examples of how functions can be used
P . ~//9I

are shown below:

allowed in BASI

imple LET statement, to set Y to

- Inas 3:
Y = SQR(9) , ,
- In a compound LET statement: «
Y = 6/SQR(9)+1 .
- As an index: ©
PRINT RLSQR(Q))
« ~ ~(This assumes R has been dimensioned and that R(3)
is defined.) \\\v‘
- With a variable argument:
Y = SQR(X) A
J (If the statement X = 16 appeared earlier, then Y
would be given the value 4.)
- With a function argument:
Z = SQR(SQR(16))
TABLE 3. BUILTNIN BASIC FUNCTIONS.
INT Takes the 1ntege¥ part of the argument.
RND Generates a random number. ‘ .
SGN Finds the sign df the argument. This T v

function is as follows
-1 if the argument is negative

~

" page 12/M0-07

~t

- ° Table 3. Continued.

~

0 if the argumenr is zero
+1 if the argument is positive

ABS Takes the absolute value of the argu- 4§
‘ment.) ’

SQR Takes the square root of the argument.

SINY Trigonometric functions. Al]l assume °

~ COS } the argumenr_i in radians (360° cor-

1. ’ TAN ‘re5ponds to 27 or 6.28 radians).

OTHER FUNCTIONS

. The INT function gives the nearest integer below its
a;Eument. For instance, INT(3.17) is 3; the fraction part,
.17, is dropped. If the argument is already an integer, there

~ is no change. _Thus, INT(37) gives 37.

For negative numbers, INq may seem a little peculiar,
simrce INT(-3.1) gives -4; but this fits the rule, since -4
is the next integer below -3.1. . :

* The RND functlon generates a random number between 0
and 1. A compdter is actually too predictable to geneérate
a totally unpredictable number. Howéver, the numbers gen-
erated by RND are random in a statistical sense and, under ‘.
most conditions, impossible to predict. Because they are
almost ramdom, but still reproducible, rhey are sometimes'

-

called pseﬁdorandom. - .
7/ i . The RND function requires an argument so BASIC can re-
cognize it as a function. However, the value of the argument

does not matter.
> INT and RND-can be used togfther.to generate random

— © .

MO-07/Pdge 13~

N K4

integers within\a specified range.%,Consider the following

. statement: ‘ S

Y = 14+ INT(6*RND(1)) a
5 .
RND is‘given the\argument 1 fof}simplicity. (Some BASIC
ihterpreters req&ire RND(@#) to be entered.) It returns any
value between 0 and 1. Multiplyinggthis by six gives a random
number between 0 and 6. This forms the argument for the INT . -
function, which Teturns only the integer part of ‘the random _<§*r—
~ number. The result is the same as throwing a dice; one of . .
* the integers 1, 2, 3, 4, 5, or 6 will be generﬁted at random.
The Guess My Number program can be vastly-improved, by ’
'generatlng a random number to guess instead of always usting
31. The improved _program shown 1n Table 4 generates some .

P
$

¢

_ number R ‘between 1 and 1000. ”' T

-

"\

-F

TABLE 4. GUESS‘A NUMBER GUESSING GAME.

.

10 R = HINT(lOOO*RND(l)) .
20: "I AM THINKING OF A NUMBER BETWEEN 1 AND 1000"

30 INPUT "GUESS THE NUMBER"; G

+

&

| 40" IF G=R THEN 80 : -
50 IF G < R THEN PRINT "TOO LOW"
60 IF G-> R THEN PRINT "TOO HIGH" | .
\ 70 GOTO 30 ‘
| 80~ PRINT "CORRECT!" J -
- ¢
' . I's
3 . £ , \
. N 245 . *
Page 14/M0O-07 _ .
o A
— L [e e ¥

N '
v, .

- -~

: ' A .- '
- The sign fggetion SGN is useful in dete#mining the

. sign of"a'kUmben: SGN(X) retugns -1, if X is negative,

+1, if X.is positive; and 0, if X is zero. <zf/ —

_ The absolute value fUnctlon ABS can be used to drop
the minus 51gn in a number. ABS(X) equals X, if X is™ &
positive; but if X is negative, ABS(XQ gives -X a'pqsitive
number For. instance,; ABS(3) is 3 and ABS(-3) is,-(-3), o o
+3. SQR as discussed above, 'is the square rpot function.
< The trigonometric functlons SIN, COS, and TAN correspond
to their usual deflnltlons. ; This 'is iliustrated in Figure 1.

"If a, b, and c are the lengﬁhs of the sides of a‘right tri- T

angle, and A.is the angle -in radians opposite the leg a’, the
SIN(A) is the ratio a/c. 'Similarly, COS{A) = b/c, and TAN(A) .
=.a/b. A radian is a measure of angle chosen so that 2= T
radiahs is 360°. Equivalently, 1 radian is 57 3°, and one
degree is 0.01745 radians. . s

. .
51n(A) %
) cos(A) g)‘
tan(A) %
. - .
.) ’
. Figure 1. The Definitions of
"o > Trigonometric’ Functions. .
© ’ “.
A - N
° - a
) < - < » .
v, L I .

' ' " MO-07/Page 15
: . - ’] e -

o 246 L

-

EXAMPLE B: FUNCTIONS IN BASIC.

Given: BASIC in immediate ‘mode.
Find: The value of x where:
' 3*sin (6y-z)

lw/tan(g-r - cos(&rz l)l

3

H NN
" " [} "

2.71

Note: | x | is a common shorthand for "the aﬁéolute.

value of the expression-Xx.'
Solution: The equations can be typed almost as given, but in
the reverse order so they can be evaluated:

. R=2.71
C Z=13.4 -
Y:

ABS((SQR(TAN(Z-R))) - COS (3*R*Z-1))
PRINT 3*SIN(6*Y-Z)s ~ ’
The result»is 2.98164. If the long expression is
too confusiﬁg, it can be evalua?ed in12§wts by
defining new)ifitermediate variables:,

TAN(Z-R)

SQREA)-—— e
COS (3*R*Z-1) e
B-C

Ll HLMZQ
) C
. « D

Y

"= ABS(D)
. k ;

- -

EXAMPLE C: GRAPHING A FUNCTION.

Given: ' ' The function Y '51n(x)cos(20X)

Find: . ‘A program that will graph this for X from -6 to
s 6 on the screen. -

Solution: Remember that the screen coordinates run from -64

Y.

‘-

Page 16/M0-07 S -

. Example C. Continued.

to 64 and that the smallest step size i; 0.2. 1If
X runs from -6 to 6, this can be multiplied by
‘ 10 to gef the horizontal screep'coordinate. Then
’ the graph will almost fill the screen as X goes
fro?’-6 to 6. .

> /

The function is evaluated in line 50. Its largest

* value will be 1; so Y is multiplied by 45 in line
60 to get the vertical screen coordinate.’]
) 5 SCROLL OFF ' o}
10 ERASE :
20 PEN UP .
30 FOR I = -600 to 600 .
40 X = 0.01*I A
. - 50 Y =, SIN(X)*COS(20*X)
. N - 60 JUMP TO 10%X, 45*Y -
' ‘ 70" PEN DOWN
. 5 ' 80 NEXT X - .
) ' SUBROUTINES »
, - ' ~
. A subrout;ne is part of a program that accomplishes a
specifi¢ task that may be needed at more than one point in a
- program. Figure 2 illustrates this concept. When the main
program reaches point A, a particular job mdstﬁbe done, such
as calculating a special function or.drawing a figure. This
job is accomplished in ‘a subroutine starting at C. When the
iSubroutine reaches D, it is finished and should return to A
. -$0 the main progrém can_continue. »
\ - w0
; - ¢ . - _
e) . MO-07/Page 17

248 D

i
MAIN PROGRAM SUBROUTINE

Figure 2. .Execution Flow of a Program
Calling a Subroutine Twice.

< .

When the main program reaches B, the subroutine is needed
again; so. control is again passed to C. This time, when D is
reached, control should return to B so the main program can
continue where it left off this time. ' ‘

Subroutlnes Tequire twé;gew BASIC 1nstruct10ns, GOSUB to
' g0 to the subroutlne and RETURN: to mark its‘end.

The act of’ pa551ng control to a subroutine is named. a
call. In BASIC, subroutines are "called" with the following

.

instruction:) A

GOSUB N
N is the line number at the beginning of the subroutine. N°
can be.an expression if its value is a line number.

(4

Page 18/M0-07

~¢

. statement, it will know something is wrong because there 1is

®

The 'subroutine starts at N and endg with the special
instructign RETURN. RETURN instructs BASIC to go.back to
the calling program and resume executing. the instruction
follow1ng the GOSUB instruction.

Subroutines should not be at the beginning of a program..
As a result, they are usually given large line numbers so
they will follow the main progré;“uggwiﬁﬁ%hé—éi mple below
(line 1000 was chosé;TT)

With the subroutine following the main'program, there
must be a way to tell BASIC where to stop. With no end
indication, BASIC will continue beyond the end of the main
program and start executing the subroutine as, though it were
more of the main program. When BASIC encounters a RETURN

nowhere to return. It will stop and print out "CONTROL |
STACK ERROR". L - |

To alleviate these problems, there is an instruction }
*STOP wh1ch marks the end of%the main program and tells BASIC
to stop.

The following is a subroutine that can draw a. square of

»

size L:
-
1000 PEN DOWN
2. 1010 FOR I = 1 TO.4
1020 MOVE L
1030 TURN 90]
"1040 NEXT I . }
1050 PEN UP : |
1060 RETURN

'

e
-

s) : .
This subroutine might be used in the following main pro-

gram to drdw two concentric squares:
~
¢ N ~% |

MQ-07/Page 19

250 L

10 PEN UP

20 HOME .
30 ERASE .
40 L = 20)
) . 50 GOSUMB 1000

60 -JUMP TO -10,-10
0L =3%0 B . -
80 GOSUB 1000 '

90 STOP -

\/\ . . \
.
.
R DB I R EE B O e

Instruétion 40 sets the sduareosize to 20. The instruc-
tion with 11ne number 40 calls the subroutine, which draws the.
square. Then the turtle is moved to the start of the next
square and the square size is set at 40. That square is drawn
with the subroutlne call in line 80.

&

SR 3R

- ~ EXAMPLE D: ARCOS SUBROUTINE.

Given: _ The subroutine below that calculates the value of
a fraction is known as the inversq cosine (arcos).
This subroutine was needed in the solar collector
ﬁrogram in Module MO-05.

1000 REM THIS SUBROUTINE CALCULATES ARCOS(X)
. 1010 REM THE VALUE IS RETURNED IN Y

[B IIIIL

1020 IF X > 1 THEN 1130
* 3030 IF X < -1 THEN 1130 I
1040 IF X = 1 THEN 1150 - T
1050 IF X = -1 THEN 1170
1060 IF X > 0.5 THEN Y = SQR(2*(1-X)
17 1070 IF X < -0.5 THEN Y = 3.1416-SQR(2*(1+X)

1080°Y = 1.5708*(1-X)

[

Page 20/M0-07 o=

Example D. Continued.,—J"

1090 D = COS(Y)-X

1100 IF. D <0.001 THEN RETURN

1110 Y = Y-D/SIN(Y)

1120 GOTO 1090 » L

1130 :"ARGUMENT OF ARCOS OUT OF RANGE'"
1140 -RETURN - - == = -
1150 Y = 0

1160 RETURN

1170 Y = 3.1416

1180 RETURN

Find: Write a program that asks for a number and prints
the inverse cosine of that number.

Solution: The main program asks for the argument in line 10,
calculates the inverse in line 20 and prints the
fesult in line 30. The subroutine must follow
this program; so line 40 is needed to Stop execu-
tion.)

k)
»

.10 INPUT "GIVE ARGUMENT FOR THE INVERSE FUNCTION": X
20 -GOSUB 1000 |

30 PRINT*"'THE INVERSE COSINE OF'': X, "IS": Y

40 STOP _ ,

i

MO-07/Page 21

EXERCISES

T. Suppose X and Y are both indexed variables, each Contain-
' ing 100 values that correspond to the x, y screen coordi- -
nates of 100 points that is to be graphed. Write a pro-
gram that draws a graph that consists of a line connect-
ing successive points - in order - from the first to the .,
lastf) ‘
2. Determine the effect of each ‘of the following prggréms?
a. 10 FOR I = 0 to 2 STEP 0.1
20 JUMP TO 10*I, I*I*I
30 NEXT I
b. 10 DIM X (10)
20 FOR I =1 T0 10
30 X(I) = I -SQR(I)
40 NEXT I :

,

. o

..~ LABORATORY MATERIALS .

———

X

A’disk-based microcomputer CP/M and BASIC.
1 full-size floppy disk.

M0O-«07/Page 23

253

'LABORATORY PROCEDURES

1.

L3

‘_substitutinglthe following line:

Enter and run GUESS.
GUESS, the number-guessing program listed in Table

4 illustrated conditional statements and functions.
Enter it into the computer, run it and save it on the
disk. ! C) -
Modlfy GUESS

GUESS is fairly simple as it is Written. Modify

it in the follow1ng ways: !
a. It prints "CLOSE" if the guesé is wrong but
within 3 of the correct value.
b. The range of possible numbers is 1 to 100 in;tead
of 1 to 1000.
c. The program starts over with a new random number after

it is played orce. Record the complete programs in
the Data Table. T
Graph fuqctidns

contains a convenient graphing program.
€écute the program as written. Name it GRAPH
and savé it. Describe the output on the screen.

Example

~Now use the ideas in that program to graph other
functions. The range of X values is set in line 30.

"The function is evaluated in line 40. These values cannot

be graphed déreéfly, however, because the screen coordi- .

v nates are fixed. Line 50 multiplies the X and Y values '

so they fill up the screen. To see the importance of
this, ‘try running the program by just plotting the X and
Y values difectly. This can be done in the program by

'DA

50 JUMP TO X,Y

Describe the results of running this program as modified.

Describe the effect of running the program with the fol-
lowing inserted: : ’

50 JUMP TO 5*X + 30,'20* Y + 20

L)

e e o L
- L e e oo e i N e - —— —

The multipliers 10 and 45 used in the or1g1na1 11ne 50

were chosen to fit the needs of the function graphed

To graph other functions, other multipliers mgay be needed.

The constants 30 and 20 in the last example move the X

graph on the TV. "These car be used to move a graph if the

origin of the graph is not wanted in the center ef the‘screen.
Graph each of the following functions so that the screen

is filled.” Record the program and describe the results in

Data Table. - - - i

~

_ SIN(X)
Y= ==

for X between -6 and 6 >

1+COS(X) for X between -6 and 6
SQR(X) for X between 0 and 10

Y
-Y

Use the autoscaling graphing program. ' \
* The problems encountered above (modlfylng the
program to fill the screen) can be solved automatically
using the AGRAPH - an automatic scaling graphing program.
Load AGRAPH from the master disk and store it on, your
disk. AGRAPH is in BASIC, so load BASIC and- call for
AGRAPH as an old program. .
- When Tun, the program is\Self explanatory. Run it
for X between 0 ‘and 10 and describe the function it
graphs. . v . -
To change graphs, the~ functlon must be changed.
The function is at line 300. Any statement that deter-

‘MO-07/Page 25

255

mines H, the height or Y coordinate, in terms of X can
. be used. \ . f
Change line 300 to graph functions:
H = COS(X) + COS(2X) + COS(3X)
for X between -3 and 3

, X | |
Amr o1 | .

for X between™2 and 6

. ¥

Describe the results seen on the TV screen.
: y .

-t |
\ ’
)

Page 26/MO-07

. e e e .
3 " \
S DATA TABLE
) \
» \ W
. e 2 DATA TABLE
STEP 2: GUESS . e
Results of run: Number chosen ¢4 Number of guesses
A} . . :73,— -
’ e ——requireds et -
Modifications: -
» Lot 1. To print CLOSE: ., N

2. To ?hange the range:

N

2 -

—~

3. To continue playing: “

4 .
STEP 3: GRAPHING
Describe the result of running GRAPH:

Describe the results when line 50 is 50 JUMP TO X,Y;

— \

Explain why this is seen:
' ?

. . Qesdribe the results with 50 JUMP TO 5*X+30, 20%*Y+20:

\\ - Explain:
\\ * Sketch the graph of the following functions:
\\\J . SIN(X) .
\ X
-6 <X <6 . ' /

’
ok

MO-07/Page 27

=

Q ' j - . ‘ ‘2557

“u

Data Table. Continued. -

1+COS (X
6 <X %6
- Y = SQR(X)
I
0<x<10 ¥
STEP 4: AGRAPH

Skgtch'of graph as supplied:
What function is ;this?

. Sketch of:
H=COSX + COS 2X .
+COS 3X .
ﬁ -3<X<3

Sketch of:

H = 1
ﬁ-4)2. + 0.1

: 2 < }‘s 6

Page 28/MO-07

-

' REFERENCES

Albrecht, Bob; Finkel, Leroy; and Brown, Jerald R. BASIC for
- Home Computers. New Yprk: John Wiley & Sons, Inc.,

1978. - . o /
BASIC User's Manual. Cambridge, MA: TERC. - .
Dwyer and Critchfield. BASIC and the Personal Computer. Reading;

AM: Addison-Wesley Publishing Con}pany", 1979.. .

—~
“ o~
,'
* »~
» .
Bl ~ .
\
- - . /"’
ry &
€) ~ ‘
- L4 © —~
. ‘ L 4 -
. k . 3 L . -
. MO-07/Page 29

